[1] Athreya K B, Ney P E. Branching Processes. Berlin: Springer, 1972 [2] Bovier A.Gaussian Processes on Trees: From Spin Glasses to Branching Brownian Motion.Cambridge: Cambridge University Press, 2016 [3] Etheridge A M.An Introduction to Superprocesses.University Lecture Series, 20. Providence, RI: American Mathematical Society, 2000 [4] Feller W.An Introduction to Probability Theory and Its Applications II. 2nd ed.New York: John Wiley and Sons, 1971 [5] Gao Z.A note on exact convergence rate in the local limit theorem for a lattice branching random walk.Acta Mathematica Scientia, 2018, 38B(4): 1259-1268 [6] Hu Y. A note on the empty balls left by a critical branching Wiener process.Periodica Mathematica Hungarica, 2005, 50: 165-174 [7] Kesten H.Branching random walk with a critical branching part.Journal of Theoretical Probability, 1995, 8: 921-962 [8] Lalley S P, Shao Y.On the maximal displacement of critical branching random walk.Probability Theory and Related Fields, 2015, 162: 71-96 [9] Le Gall J F.Spatial Branching Processes, Random Snakes and Partial Differential Equations.Lectures in Mathematics ETH Zürich. Basel: Birkhäuser, 1999 [10] Li Z.Measure-Valued Branching Markov Processes. Heidelberg: Springer, 2011 [11] Nagaev S V. Large deviations of sums of independent random variables. The Annals of Probability, 1979, 7: 745-789 [12] Perkins E.Dawson-Watanabe Superprocesses and Measure-Valued Diffusions. Berlin: Springer, 2002 [13] Révész P. Large balls left empty by a critical branching Wiener field.Statistica Neerlandica, 2002, 56: 195-205 [14] Shi Z.Branching Random Walks.École d'Été de Probabilités de Saint-Flour XLII-2012. Lecture Notes in Mathematics 2151. Berlin: Springer, 2015 [15] Slack R S. A branching process with mean one and possibly infinite variance. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1968, 9: 139-145 [16] Zhang S, Xiong J. A note on the empty balls of a critical super-Brownian motion.Bernoulli, 2024, 30: 72-87 |