Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (1): 295-310.doi: 10.1007/s10473-024-0116-0
Previous Articles Next Articles
Jieling Chen, Mingsheng Liu†
Received:
2022-08-04
Revised:
2023-07-13
Online:
2024-02-25
Published:
2024-02-27
Contact:
† Mingsheng Liu, E-mail: liumsh@scnu.edu.cn
About author:
Jieling Chen ,E-mail: 1304889502@qq.com
Supported by:
CLC Number:
Jieling Chen, Mingsheng Liu. ESTIMATE ON THE BLOCH CONSTANT FOR CERTAIN HARMONIC MAPPINGS UNDER A DIFFERENTIAL OPERATOR*[J].Acta mathematica scientia,Series B, 2024, 44(1): 295-310.
[1] Abdulhadi Z, Muhanna Y, Khuri S. On univalent solutions of the biharmonic equations. J Inequal Appl, 2005, 5: 469-478 [2] Abdulhadi Z, Muhanna Y, Khuri S. On some properties of solutions of the biharmonic equation. Appl Math Comput, 2006, 177: 346-351 [3] Abdulhadi Z, Muhanna Y. Landau's theorems for biharmonic mappings. J Math Anal Appl, 2008, 338: 705-709 [4] Aghalary R, Mohammadian A, Jahangiri J. Landau-bloch theorems for bounded biharmonic mappings. Filomat, 2019, 33(14): 4593-4601 [5] Chen H H. On the Bloch constant, Approximation Complex Analysis,Potential Theory. Dordrecht: Springer, 2001: 129-161 [6] Chen H H, Gauthier P M, Hengartner W. Bloch constants for planar harmonic mappings. Proc Amer Math Soc, 2000, 128(11): 3231-3240 [7] Chen H H, Gauthier P M. The Landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings. Proc Amer Math Soc, 2011, 139(2): 583-595 [8] Chen S L, Ponnusamy S, Rasila A. Coefficient estimates, Landau's theorem and Lipschitz-type spaces on planar harmonic mappings. J Aust Math Soc, 2014, 96(2): 198-215 [9] Chen S L, Ponnusamy S, Wang X. Properties of some classes of planar harmonic and planar biharmonic mappings. Complex Anal Oper Theory, 2011, 5: 901-916 [10] Chen S L, Ponnusamy S, Wang X. Coefficient estimates and Landau-Bloch's constant for planar harmonic mappings. Bulletin of the Malaysian Mathematical Sciences Society, Second Series, 2011, 34(2): 255-265 [11] Chen S L, Ponnusamy S, Wang X. On some properties of solutions of the p-harmonic equation. Filomat, 2013, 27(4): 577-591 [12] Chen S F, Liu M S. Landau-type theorems and bi-Lipschitz theorems for bounded biharmonic mappings. Monatsh Math, 2020,193(4): 783-806 [13] Colonna F. The Bloch constants of bounded harmonic mappings. Indiana Univ Math J, 1989, 38: 829-840 [14] Dorff M, Nowak M. Landau's theorem for planar harmonic mappings. Comput Meth Funct Theory, 2000, 4(1): 151-158 [15] Grigoryan A. Landau and Bloch theorems for harmonic mappings. Complex Variable Theory Appl, 2006, 51(1): 81-87 [16] Harris L A. On the size of balls covered by analytic transformations. Monatsh Math, 1977, 83: 9-23 [17] Huang X Z, Fu D M. Estimates on the univalent radius and Bloch constants for planar harmonic mappings under differential operator (Chinese). Chin Ann Math, 2013, 34A(6): 653-662 [18] Huang X Z.Sharp estimate on univalent radius for planar harmonic mappings with bounded Fréchet derivative (in Chinese). Sci Sin Math, 2014, 44(6): 685-692 [19] Lewy H. On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull Amer Math Soc, 1936, 42: 689-692 [20] Lin R Y, Liu M S, Ponnusamy S. The Bohr-type inequalities for holomorphic mappings with Lacunary series in several complex variables. Acta Mathematica Scientia, 2023, 43B(1): 63-79 [21] Liu M S. Landau's theorems for biharmonic mappings. Complex Variables and Elliptic Equations, 2008, 53(9): 843-855 [22] Liu M S. Estimates on Bloch constants for planar harmonic mappings. Sci China Ser A-Math, 2009, 52(1): 87-93 [23] Liu M S, Chen H H. The Landau-Bloch type theorems for planar harmonic mappings with bounded dilation. J Math Anal Appl, 2018, 468(2): 1066-1081 [24] Liu M S, Liu Z W. On Bloch constants for certain Harmonic mappings. Southeast Asian Bull Math, 2013, 37(2): 211-220 [25] Liu M S, Liu Z X, Xu J F. Landau-type theorems for certain biharmonic mappings. Abstr Appl Anal, 2014, 2014: Article ID 925947 [26] Liu M S, Luo L F. Landau-type theorems for certain bounded biharmonic mappings. Results Math, 2019, 74(4): Article ID 170 [27] Liu M S, Luo L F. Precise values of the Bloch constants of certain log-p-harmonic mappings. Acta Mathematica Scientia, 2021, 41B(1): 297-310 [28] Liu M S, Luo L F, Luo X. Landau-Bloch type theorems for strongly bounded harmonic mappings. Monatsh Math, 2020, 191(1): 175-185 [29] Liu M S, Xie L, Yang L M. Landau's theorems for biharmonic mappings (II). Math Methods Appl Sci, 2017, 40(7): 2582-2595 [30] Liu M S, Liu Z W, Zhu Y C. Landau's theorems for certain biharmonic mappings. Acta Mathematica Sinica, Chinese Series, 2011, 54: 69-80 [31] Liu M S, Wu F, Yang Y. Sharp estimates of quasi-convex mappings of type B and order alpha. Acta Mathematica Scientia, 2019, 39B(5): 1265-1276 [32] Liu X S. Sharp distortion theorems for a class of biholomorphic mappings in several complex variables. Acta Mathematica Scientia, 2022, 42B(2): 454-466 [33] Mocanu P T. Starlikeness and convexity for nonanalytic functions in the unit disc. Mathematica (Cluj), 1980, 22(45): 77-83 [34] Muhanna Y, Schober G. Harmonic mappings onto convex mapping domains. Canad J Math, 1987, 39(6): 1489-1530 |
[1] | Changyu GUO, Changlin XIANG. REGULARITY OF P-HARMONIC MAPPINGS INTO NPC SPACES [J]. Acta mathematica scientia,Series B, 2021, 41(2): 633-645. |
[2] | Mingsheng LIU, Lifang LUO. PRECISE VALUES OF THE BLOCH CONSTANTS OF CERTAIN LOG-p-HARMONIC MAPPINGS [J]. Acta mathematica scientia,Series B, 2021, 41(1): 297-310. |
[3] | Zhigang PENG, Milutin OBRADOVI?. NEW RESULTS FOR A CLASS OF UNIVALENT FUNCTIONS [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1579-1588. |
[4] | Ling LI, Hongyi LI, Di ZHAO. A BOUNDARY SCHWARZ LEMMA FOR PLURIHARMONIC MAPPINGS FROM THE UNIT POLYDISK TO THE UNIT BALL [J]. Acta mathematica scientia,Series B, 2018, 38(3): 926-934. |
[5] | Zhigang PENG, Gangzhen ZHONG. SOME PROPERTIES FOR CERTAIN CLASSES OF UNIVALENT FUNCTIONS DEFINED BY DIFFERENTIAL INEQUALITIES [J]. Acta mathematica scientia,Series B, 2017, 37(1): 69-78. |
[6] | H. M. SRIVASTAVA, S. GABOURY, F. GHANIM. INITIAL COEFFICIENT ESTIMATES FOR SOME SUBCLASSES OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 863-871. |
[7] | TANG Huo, Erhan DENIZ. THIRD-ORDER DIFFERENTIAL SUBORDINATION RESULTS FOR ANALYTIC FUNCTIONS INVOLVING THE GENERALIZED BESSEL FUNCTIONS [J]. Acta mathematica scientia,Series B, 2014, 34(6): 1707-1719. |
[8] | Rabha W. IBRAHIM, Janusz SOK′O L. ON A NEW CLASS OF ANALYTIC FUNCTION DERIVED BY A FRACTIONAL DIFFERENTIAL OPERATOR [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1417-1426. |
[9] | Samaneh Gholizadeh HAMIDI, Suzeini Abdul HALIM, Janusz SOKóL. STARLIKENESS AND SUBORDINATION PROPERTIES OF A LINEAR OPERATOR [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1446-1460. |
[10] | PENG Zhi-Gang, HAN Qiu-Qiu. ON THE COEFFICIENTS OF SEVERAL CLASSES OF BI-UNIVALENT FUNCTIONS [J]. Acta mathematica scientia,Series B, 2014, 34(1): 228-240. |
[11] | Jacek DZIOK|Ravinder Krishna RAINA|Janusz SOKóL. DIFFERENTIAL SUBORDINATIONS AND α-CONVEX FUNCTIONS [J]. Acta mathematica scientia,Series B, 2013, 33(3): 609-620. |
[12] | WANG Jian-Fei, LIU Ta-Shun, TANG Xiao-Min. DISTORTION THEOREMS FOR BLOCH MAPPINGS ON THE UNIT POLYDISC Dn [J]. Acta mathematica scientia,Series B, 2010, 30(5): 1661-1668. |
[13] | WU Lan-Ha-Si. ON UNIVALENT BLOCH FUNCTIONS [J]. Acta mathematica scientia,Series B, 2001, 21(1): 37-40. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|