Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (1): 275-294.doi: 10.1007/s10473-024-0115-1
Previous Articles Next Articles
Zhenlong Chen, Weijie Yuan†
Received:
2022-09-01
Revised:
2023-07-14
Online:
2024-02-25
Published:
2024-02-27
Contact:
† Weijie Yuan, E-mail: weijieyuann@163.com
About author:
Zhenlong Chen, E-mail: zlchen@zjsu.edu.cn
Supported by:
CLC Number:
Zhenlong Chen, Weijie Yuan. MULTIPLE INTERSECTIONS OF SPACE-TIME ANISOTROPIC GAUSSIAN FIELDS*[J].Acta mathematica scientia,Series B, 2024, 44(1): 275-294.
[1] Khoshnevisan D. Intersections of Brownian motions. Expos Math, 2003, 21: 97-114 [2] Taylor S J. The measure theory of random fractals. Math Proc Camb Philos Soc, 1986, 100: 383-406 [3] Rosen J. The intersection local time of fractional Brownian motion in the plane. J Multivariate Anal, 1987, 23: 37-46 [4] Xiao Y. Random fractals and Markov processes//Lapidus M L, van Frankenhuijsen M. Fractal Geometry and Application: A Jubilee of Benoit Mandelbrot. Providence: American Mathematical Society, 2004: 261-338 [5] Li Y, Xiao Y. Multivariate operator-self-similar random fields. Stoch Process Appl, 2011, 121: 1178-1200 [6] Luan N, Xiao Y. Spectral conditions for strong local nondeterminism and exact Hausdorff measure of ranges of Gaussian random fields. J Fourier Anal Appl, 2012, 18: 118-145 [7] Mason D J, Xiao Y. Sample path properties of operator self-similar Gaussian random fields. Theor Probab Appl, 2002, 46: 58-78 [8] Ni W.Studies on Sample Properties of Anistropic Random Fields [D]. Hangzhou: Zhejiang Gongshang University, 2018 [9] Xiao Y. Sample path properties of anisotropic Gaussian random fields// Khoshnevisan D, Rassoul-Agha F. A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Mathematics1962. New York: Springer, 2009: 145-212 [10] Xiao Y. Recenct developments on fractal properties of Gaussian random fields//Barral J, Seuret S. Further Developments in Fractals and Related Fields. New York: Springer, 2013: 255-288 [11] Nualart E, Viens F.Hitting probabilities for general Gaussian processes. arXiv:1305.1758 [12] Ni W, Chen Z. Hitting probabilities of a class of Gaussian random fields. Statist Probab Lett, 2016, 118: 145-155 [13] Biermé H, Lacaux C, Xiao Y. Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull London Math Soc, 2009, 41: 253-273 [14] Chen Z, Xiao Y. On intersections of independent anisotropic Gaussian random fields. Sci China Math, 2012, 55: 2217-2232 [15] Ni W, Chen Z.Hitting probabilities and dimension results for space-time anisotropic Gaussian fields (in Chinese). Sci Sin Math, 2018, 48: 419-442 [16] Chen Z, Xiao Y.Local times and Hausdorff dimensions of inverse images of Gaussian vector fields with space-anisotropy (in Chinese). Sci Sin Math, 2019, 49: 1487-1500 [17] Dvoretzky A, Erdös P, Kakutani S. Double points of paths of Brownian motion in $n$-space. Acta Sci Math, 1950, 12: 75-81 [18] Kahane J P. Points multiples des processus de Lévy symétriques stables restreints à un ensemble de valurs du temps. Sém Anal Harm, Orsay, 1983, 38: 74-105 [19] Kahane J P.Some Random Series of Functions. Cambridge: Cambridge University Press, 1985 [20] Khoshnevisan D, Xiao Y. Lévy processes: capacity and Hausdorff dimension. Ann Probab, 2005, 33: 841-878 [21] Evans S N. Potential theory for a family of several Markov processes. Ann Inst Henri Poincaré Probab Stat, 1987, 23: 499-530 [22] Tongring N. Which sets contain multiple points of Brownian motion? Math Proc Cambridge Philos Soc, 1988, 103: 181-187 [23] Fitzsimmons P J, Salisbury T S. Capacity and energy for multiparameter processes. Ann Inst Henri Poincaré Probab Stat, 1989, 25: 325-350 [24] Peres Y. Probability on trees: an introductory climb//Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math 1717. Berlin: Springer, 1999: 193-280 [25] Dalang R C, Khoshnevisan D, Nualart E, et al. Critical Brownian sheet does not have double points. Ann Probab, 2012, 40: 1829-1859 [26] Chen Z.Multiple intersections of independent random fields and Hausdorff dimension (in Chinese). Sci China Math, 2016, 46: 1279-1304 [27] Chen Z, Wang J, Wu D. On intersections of independent space-time anisotropic Gaussian fields. Statist Probab Lett, 2020, 166: 108874 [28] Wang J, Chen Z. Hitting probabilities and intersections of time-space anisotropic random fields. Acta Math Sci, 2022 42B(2): 653-670 [29] Falconer K J.Fractal Geometry-Mathematical Foundations and Applications. Chichester: John Wiley and Sons Ltd, 1990 [30] Khoshnevisan D.Multiparameter Processes: An Introduction to Random Fields. New York: Springer-Verlag, 2002 |
[1] | Lewen JI, Zhihui YANG. THE DISCRETE ORLICZ-MINKOWSKI PROBLEM FOR $p$-CAPACITY [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1403-1413. |
[2] | Li-Xin ZHANG. STRONG LIMIT THEOREMS FOR EXTENDED INDEPENDENT RANDOM VARIABLES AND EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES UNDER SUB-LINEAR EXPECTATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(2): 467-490. |
[3] | Jun WANG, Zhenlong CHEN. HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELDS [J]. Acta mathematica scientia,Series B, 2022, 42(2): 653-670. |
[4] | Feng SU. GENERALIZED RIEMANN INTEGRAL ON FRACTAL SETS [J]. Acta mathematica scientia,Series B, 2017, 37(5): 1230-1236. |
[5] | Fredj ELKHADHRA. LELONG-DEMAILLY NUMBERS IN TERMS OF CAPACITY AND WEAK CONVERGENCE FOR CLOSED POSITIVE CURRENTS [J]. Acta mathematica scientia,Series B, 2013, 33(6): 1652-1666. |
[6] | Metin BASARIR, Emrah Evren KARA. ON THE mth ORDER DIFFERENCE SEQUENCE SPACE OF GENERALIZED WEIGHTED MEAN AND COMPACT OPERATORS [J]. Acta mathematica scientia,Series B, 2013, 33(3): 797-813. |
[7] | Ivana Djolovi′c, Eberhard Malkowsky. CHARACTERIZATIONS OF COMPACT OPERATORS ON SOME EULER SPACES OF DIFFERENCE EQUENCES OF ORDER m [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1465-1474. |
[8] | KOU Yan-Lei, DING Shi-Jin. PARTIAL COMPACTNESS FOR LANDAU-LIFSHITZ MAXWELL EQUATION IN TWO-DIMENSION [J]. Acta mathematica scientia,Series B, 2011, 31(2): 727-748. |
[9] | Veli Shakhmurov. ABSTRACT CAPACITY OF REGIONS AND COMPACT EMBEDDING WITH APPLICATIONS [J]. Acta mathematica scientia,Series B, 2011, 31(1): 49-67. |
[10] | CHEN Zhen-Long, LI Hui-Qiong. POLAR SETS OF MULTIPARAMETER BIFRACTIONAL BROWNIAN SHEETS [J]. Acta mathematica scientia,Series B, 2010, 30(3): 857-872. |
[11] | Hu Dihe; Zhang Xiaomin. THE DIMENSION FOR RANDOM SUB-SELF-SIMILAR SET [J]. Acta mathematica scientia,Series B, 2007, 27(3): 561-573. |
[12] | Hu Dihe; Zhang Xiaomin. THE RANDOM SHIFT SET AND RANDOM SUB-SELF-SIMILAR SET [J]. Acta mathematica scientia,Series B, 2007, 27(2): 267-273. |
[13] | Chen Zhenlong. GENERALIZED BROWNIAN SHEET IMAGES AND BESSEL-RIESZ CAPACITY [J]. Acta mathematica scientia,Series B, 2007, 27(1): 77-91. |
[14] | Yang Chao; Zhang Jianzhong. ON THE BOTTLENECK CAPACITY EXPANSION PROBLEMS ON NETWORKS [J]. Acta mathematica scientia,Series B, 2006, 26(2): 202-208. |
[15] | ZHENG Shen-Zhou, KANG Xiu-Yang. THE COMPARISON OF GREEN FUNCTION |FOR QUASI-LINEAR ELLIPTIC EQUATION [J]. Acta mathematica scientia,Series B, 2005, 25(3): 470-480. |
|