Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (6): 2615-2628.doi: 10.1007/s10473-023-0618-1
Previous Articles Next Articles
Chenghua GAO†, Xingyue HE, Jingjing WANG
Received:
2022-04-27
Revised:
2023-05-30
Published:
2023-12-08
Contact:
†Chenghua GAO, E-mail: gaokuguo@163.com;
About author:
Xingyue HE, E-mail: hett199527@163.com; Jingjing WANG, E-mail: WJJ950712@163.com
Supported by:
CLC Number:
Chenghua GAO, Xingyue HE, Jingjing WANG. THE EXISTENCE AND MULTIPLICITY OF k-CONVEX SOLUTIONS FOR A COUPLED k-HESSIAN SYSTEM*[J].Acta mathematica scientia,Series B, 2023, 43(6): 2615-2628.
[1] Bandle C, Marcus M. Large solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behavior. J Anal Math, 1992, 58(1): 9-24 [2] Ba N, Tian F J, Zheng L. ![]() ![]() ![]() ![]() ![]() [3] Colesanti A, Salani P, Francini E. Convexity and asymptotic estimates for large solutions of Hessian equations. Differential Integral Equations, 2000, 13(10): 1459-1472 [4] Covei D P. A necessary and a sufficient condition for the existence of the positive radial solutions to Hessian equation and systems with weights. Acta Math Sci, 2017, 37B(1): 47-57 [5] Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math, 1985, 155(3): 261-301 [6] Dai G W. Bifurcation and admissible solutions for the Hessian equation. J Funt Anal, 2017, 273(10): 3200-3240 [7] Dai G W, Luo H.Global structure of admissible solutions for the ![]() [8] Deimling K. Nonlinear Functional Analysis. Berlin: Springer, 1985 [9] Feng M Q. New results of coupled system of ![]() [10] Feng M Q. Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior. Adv Nonlinear Anal, 2021, 10(1): 371-399 [11] Feng M, Zhang X M.A coupled system of ![]() Math Methods Appl Sci, 2021, 44(9): 7377-7394 [12] Feng M, Zhang X. On a ![]() [13] Gao C H, He X Y, Ran M J. On a power-type coupled system of ![]() [14] Gavitone N. Isoperimetric estimates for eigenfunctions of Hessian operators. Ric Mat, 2009, 58(2): 163-183 [15] He J X, Zhang X G, Liu L S, Wu Y H. Existence and nonexistence of radial solutions of the Dirichlet problem for a class of general ![]() [16] Hu S C, Wang H Y. Convex solutions of boundary value problems arising from Monge-Ampère equation. Discrete Contin Dyn Syst, 2006, 16(3): 705-720 [17] Krasnosel'ski ![]() ![]() [18] Liu R H, Wang F L, An Y K. On radial solutions for Monge-Ampère equations. Turkish J Math, 2018, 42(4): 1590-1609 [19] Ma R Y, He Z Q, Yan D L. Three radially symmetric ![]() ![]() [20] Sun H Y, Feng M Q. Boundary behavior of ![]() ![]() [21] Sánchez J, Vergara V. Bounded solutions of a ![]() [22] Salani P. Boundary blow-up problems for Hessian equations. Manuscripta Math, 1998, 96(3): 281-294 [23] Tian G J, Wang Q, Xu C J. Local solvability of the ![]() [24] Trudinger N S, Wang X J. Hessian measures I. Topol Methods Nonlinear Anal, 1997, 10(2): 225-239 [25] Wang Q, Xu C J. ![]() ![]() ![]() ![]() ![]() [26] Wei W. Uniqueness theorems for negative radial solutions of ![]() [27] Wei W. Existence and multiplicity for negative solutions of ![]() [28] Wang X J.The ![]() [29] Wang X J. A class of fully nonlinear elliptic equations and related functionals. Indiana Univ Math J, 1994, 43(1): 25-54 [30] Zhang X M. Analysis of nontrivial radial solutions for singular superlinear ![]() [31] Zhang X M, Feng M Q. The existence and asymptotic behavior of boundary blow-up solutions to the ![]() [32] Zhang X M, Feng M Q. Boundary blow-up solutions to the Monge-Ampère equation: sharp conditions and asymptotic behavior. Adv Nonlinear Anal, 2020, 9(1): 729-744 [33] Zhang X G, Liu L S, Wu Y H, Cui Y J. A sufficient and necessary condition of existence of blow-up radial solutions for a ![]() [34] Zhang X G, Xu J F, Jiang J Q, et al. The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general ![]() [35] Zhang Z T, Qi Z X. On a power-type coupled system of Monge-Ampère equations. Topol Methods Nonlinear Anal, 2015, 46(2): 717-729 |
[1] | Yazhou CHEN, Hakho HONG, Xiaoding SHI. THE ASYMPTOTIC STABILITY OF PHASE SEPARATION STATES FOR COMPRESSIBLE IMMISCIBLE TWO-PHASE FLOW IN 3D* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 2133-2158. |
[2] | Leilei CUI, Jiaxing GUO, Gongbao LI. THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1131-1160. |
[3] | Bo Chen, Zhengmao Chen, Junhui Xie. PROPERTIES OF SOLUTIONS TO A HARMONIC-MAPPING TYPE EQUATION WITH A DIRICHLET BOUNDARY CONDITION* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1161-1174. |
[4] | Xuemei Zhang, Shikun Kan. SUFFICIENT AND NECESSARY CONDITIONS ON THE EXISTENCE AND ESTIMATES OF BOUNDARY BLOW-UP SOLUTIONS FOR SINGULAR p-LAPLACIAN EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1175-1194. |
[5] | Mingxuan Zhu, Zaihong Jiang. THE CAUCHY PROBLEM FOR THE CAMASSA-HOLM-NOVIKOV EQUATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 736-750. |
[6] | Boling Guo, Yamin Xiao. THE EXISTENCE OF WEAK SOLUTIONS AND PROPAGATION REGULARITY FOR A GENERALIZED KDV SYSTEM* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 942-958. |
[7] | Hakho Hong. THE EXISTENCE OF GLOBAL SOLUTIONS FOR THE FULL NAVIER-STOKES-KORTEWEG SYSTEM OF VAN DER WAALS GAS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(2): 469-491. |
[8] | Quansen Jiu, Lin Ma. GLOBAL WEAK SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES-LANDAU-LIFSHITZ-MAXWELL EQUATIONS FOR QUANTUM FLUIDS IN DIMENSION THREE* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 25-42. |
[9] | Wenjun WANG, Zhen CHENG. LARGE TIME BEHAVIOR OF GLOBAL STRONG SOLUTIONS TO A TWO-PHASE MODEL WITH A MAGNETIC FIELD [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1921-1946. |
[10] | Ruiying WEI, Yin LI, Zheng-an YAO. THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1058-1080. |
[11] | Pengyan WANG, Pengcheng NIU. A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS [J]. Acta mathematica scientia,Series B, 2021, 41(5): 1547-1568. |
[12] | Yutong CHEN, Jiabao SU, Mingzheng SUN, Rushun TIAN. MULTIPLE SOLUTIONS OF SOME ELLIPTIC SYSTEMS WITH LINEAR COUPLINGS [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1141-1150. |
[13] | Bashir AHMAD, Ravi P. AGARWAL, Abrar BROOM, Ahmed ALSAEDI. ON A COUPLED INTEGRO-DIFFERENTIAL SYSTEM INVOLVING MIXED FRACTIONAL DERIVATIVES AND INTEGRALS OF DIFFERENT ORDERS [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1366-1384. |
[14] | Mingwei WANG, Fei GUO. MULTIPLICITY OF PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS WITH MIXED NONLINEARITIES [J]. Acta mathematica scientia,Series B, 2021, 41(2): 371-380. |
[15] | Hakho HONG. THE EXISTENCE AND STABILITY OF STATIONARY SOLUTIONS OF THE INFLOW PROBLEM FOR FULL COMPRESSIBLE NAVIER-STOKES-POISSON SYSTEM [J]. Acta mathematica scientia,Series B, 2021, 41(1): 319-336. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 6
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|