[1] Amann H. Lusternik-Schnirelman theory and non-linear eigenvalue problems. Math Ann, 1972, 199: 55-72. [2] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349-381 [3] Azorero J G, Alonso I P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans Amer Math Soc, 1991, 323: 877-895 [4] Bartsch T, Willem M. On an elliptic equation with concave and convex nonlinearities. Proc Amer Math Soc, 1995, 123: 3555-3561 [5] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Commun Pure Appl Math, 1983, 36: 437-477 [6] Cao D, Peng S, Yan S. Infinitely many solutions for $p$-Laplacian equation involving critical Sobolev growth. J Funct Anal, 2012, 262: 2861-2902 [7] Cao D, Yan S. Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential. Calc Var Partial Differ Equ, 2010, 38: 471-501 [8] Devillanova G, Solimini S. Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv Differ Equations, 2002, 7: 1257-1280 [9] Liu Z, Han P. Infinitely many solutions for elliptic systems with critical exponents. J Math Anal Appl, 2009, 353: 544-552 [10] Rabinowitz P H.Variational methods for nonlinear eigenvalue problems//Prodi G. Eig Non-linear Probl. Berlin: Springer, 2009: 139-195 [11] Trudinger N. Remarks concerning the conformal deformation of riemannian structures on compact manifolds. Ann Della Sc Norm Super Di Pisa - Cl Di Sci, 1968, 22: 265-274 [12] Willem M. Minimax Theorems.Boston, MA: Birkhãuser, 1996: 55-70 [13] Yan S, Yang J. Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy-Sobolev exponents. Calc Var Partial Differ Equ, 2013, 48: 587-610 |