Acta mathematica scientia,Series B ›› 2020, Vol. 40 ›› Issue (6): 1666-1678.doi: 10.1007/s10473-020-0604-9

• Articles • Previous Articles     Next Articles

EXISTENCE OF SOLUTIONS FOR THE FRACTIONAL (p, q)-LAPLACIAN PROBLEMS INVOLVING A CRITICAL SOBOLEV EXPONENT

Fanfan CHEN, Yang YANG   

  1. School of Science, Jiangnan University, Wuxi 214122, China
  • Received:2019-09-14 Revised:2020-07-26 Online:2020-12-25 Published:2020-12-30
  • Contact: Yang YANG,E-mail:yynjnu@126.com E-mail:yynjnu@126.com
  • Supported by:
    This work was supported by National Natural Science Foundation of China (11501252 and 11571176).

Abstract: In this article, we study the following fractional $(p,q)$-Laplacian equations involving the critical Sobolev exponent: \[ (P_{\mu, \lambda}) \begin{cases} (-\Delta)_{p}^{s_{1}}u+(-\Delta)_{q}^{s_{2}}u=\mu |u|^{q-2}u +\lambda|u|^{p-2}u + |u|^{p_{s_{1}}^{*}-2}u, & \text{in $\Omega$,} \\ u=0, & \text{in $\mathbb{R}^{N} \setminus \Omega$}, \end{cases} \] where $\Omega \subset \mathbb{R}^{N}$ is a smooth and bounded domain, $\lambda,\ \mu >0, \ 0 < s_{2} < s_{1} < 1,\ 1 < q < p < \frac{N}{s_{1}} $. We establish the existence of a non-negative nontrivial weak solution to $(P_{\mu, \lambda})$ by using the Mountain Pass Theorem. The lack of compactness associated with problems involving critical Sobolev exponents is overcome by working with certain asymptotic estimates for minimizers.

Key words: fractional (p,q)-Laplacian, non-negative solutions, critical Sobolev exponents

CLC Number: 

  • 35B33
Trendmd