Acta mathematica scientia,Series B ›› 2017, Vol. 37 ›› Issue (6): 1665-1684.doi: 10.1016/S0252-9602(17)30099-1
• Articles • Previous Articles Next Articles
Zhiying DENG1, Yisheng HUANG2
Received:
2016-08-30
Revised:
2017-06-13
Online:
2017-12-25
Published:
2017-12-25
Contact:
Zhiying DENG
E-mail:dengzy@cqupt.edu.cn
Supported by:
Supported by the Natural Science Foundation of China (11471235, 11601052), and funded by Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjBX0037).
Zhiying DENG, Yisheng HUANG. MULTIPLE SYMMETRIC RESULTS FOR A CLASS OF BIHARMONIC ELLIPTIC SYSTEMS WITH CRITICAL HOMOGENEOUS NONLINEARITY IN RN[J].Acta mathematica scientia,Series B, 2017, 37(6): 1665-1684.
[1] Brezis H, Nirenberg L. Postive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36(4):437-477[2] Azorero J G, Alonso I P. Hardy inequalities and some critical elliptic and parabolic problems. J Differ Equ, 1998, 144(2):441-476[3] Ghoussoub N, Yuan C. Multiple solutions for quasilinear PDEs involving critical Sobolev and Hardy exponents. Trans Amer Math Soc, 2000, 352(12):5703-5743[4] Chen Z J, Zou W M. On an elliptic problem with critical exponent and Hardy potential. J Differ Equ, 2012, 252(2):969-987[5] Kang D S. Solutions for the quasilinear elliptic problems involving critical Hardy-Sobolev exponents. Acta Math Sci, 2010, 30B(5):1529-1540[6] Yang F. Singular positive radial solutions for a general semilinear elliptic equation. Acta Math Sci, 2012, 32B(6):2377-2387[7] Sun X M. p-Laplace equations with multiple critical exponents and singular cylindrical potential. Acta Math Sci, 2013, 33B(4):1099-1112[8] Hsu T S. Multiple positive solutions for quasilinear elliptic problems involving concave-convex nonlinearities and multiple Hardy-type terms. Acta Math Sci, 2013, 33B(5):1314-1328[9] Lan Y Y, Tand C L. Perturbation methods in semilinear elliptic problems involving critical Hardy-Sobolev exponent. Acta Math Sci, 2014, 34B(3):703-712[10] Deng Y B, Jin L Y. On symmetric solutions of a singular elliptic equation with critical Sobolev-Hardy exponent. J Math Anal Appl, 2007, 329(1):603-616[11] Waliullah S. Minimizers and symmetric minimizers for problems with critical Sobolev exponent. Topol Methods Nonlinear Anal, 2009, 34(2):291-326[12] Lions P L. The concentration-compactness principle in the calculus of variations, The limit case. Rev Mat Iberoamericana, 1985, 1(1) (part I):145-201; 1(2) (part Ⅱ):45-121[13] Deng Z Y, Huang Y S. Existence and multiplicity of symmetric solutions for semilinear elliptic equations with singular potentials and critical Hardy-Sobolev exponents. J Math Anal Appl, 2012, 393(1):273-284[14] Deng Z Y, Huang Y S. Existence and multiplicity of symmetric solutions for the weighted critical quasilinear problems. Appl Math Comput, 2013, 219(9):4836-4846[15] Deng Z Y, Huang Y S. On positive G-symmetric solutions of a weighted quasilinear elliptic equation with critical Hardy-Sobolev exponent. Acta Math Sci, 2014, 34B(5):1619-1633[16] Bianchi G, Chabrowski J, Szulkin A. On symmetric solutions of an elliptic equations with a nonlinearity involving critical Sobolev exponent. Nonlinear Anal, 1995, 25(1):41-59[17] Bartsch T, Willem M. Infinitely many Non-Radial Solutions of an Euclidean Scalar Field Equation. Heidelberg:Mathematisches Institut/Universitat Heidelberg, 1992[18] Chabrowski J. On the existence of G-symmetric entire solutions for semilinear elliptic equations. Rend Circ Mat Palermo, 1992, 41(3):413-440[19] De Morais Filho D C, Souto M A S. Systems of p-Laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees. Comm Partial Differ Equ, 1999, 24(7/8):1537-1553[20] Alves C O, De Morais Filho D C, Miyagaki O H. Multiple solutions for an elliptic system on bounded and unbounded domains. Nonlinear Anal, 2004, 56(4):555-568[21] Furtado M F, Da Silva J P P. Multiplicity of solutions for homogeneous elliptic systems with critical growth. J Math Anal Appl, 2012, 385(2):770-785[22] Hsu T S, Li H L. Multiplicity of positive solutions for singular elliptic systems with critical Sobolev-Hardy and concave exponents. Acta Math Sci, 2011, 31B(3):791-804[23] Li Y X, Gao W J. Existence of multiple positive solutions for singular quasilinear elliptic system with critical Sobolev-Hardy exponents and concave-convex terms. Acta Math Sci, 2013, 33B(1):107-212[24] Nyamoradi N, Hsu T S. Existence of multiple positive solutions for semilinear elliptic systems involving m critical Hardy-Sobolev exponents and m sign-changing weight function. Acta Math Sci, 2014, 34B(2):483-500[25] Kang D S. Positive minimizers of the best constants and solutions to coupled critical quasilinear systems. J Differ Equ, 2016, 260(1):133-148[26] Nyamoradi N, Hsu T S. Multiple solutions for weighted nonlinear elliptic system involving critical exponents. Sci China Math, 2015, 58(1):161-178[27] Chen Z J, Zou W M. Existence and symmetry of positive ground states for a doubly critical Schrödinger system. Trans Amer Math Soc, 2015, 367(5):3599-3646[28] Deng Z Y, Huang Y S. Existence of symmetric solutions for singular semilinear elliptic systems with critical Hardy-Sobolev exponents. Nonlinear Anal RWA, 2013, 14(1):613-625[29] Kang D S, Yang F. Elliptic systems involving multiple critical nonlinearities and symmetric multi-polar potentials. Sci Sin Math, 2014, 57(5):1011-1024[30] Deng Z Y, Huang Y S. Symmetric solutions for a class of singular biharmonic elliptic systems involving critical exponents. Appl Math Comput, 2015, 264:323-334[31] Huang D W, Li Y Q. Multiplicity of solutions for a noncooperative p-Laplacian elliptic systems in RN. J Differ Equ, 2005, 215(1):206-223[32] Palais R. The Principle of Symmetric Criticality. Comm Math Phy, 1979, 69(1):19-30[33] Wang Y J, Shen Y T. Multiple and sign-changing solutions for a class of semilinear biharmonic equation. J Differ Equ, 2009, 246(8):3109-3125[34] Edmunds D E, Fortunato D, Jannelli E. Critical exponents, critical dimensions and the biharmonic operator. Arch Rational Mech Anal, 1990, 112(3):269-289[35] Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14(4):349-381[36] Rabinowitz P H. Methods in Critical Point Theory with Applications To Differential Equations. Miami:Amer Math Soc, 1986[37] Kang D S, Deng Y B. Existence of solution for a singular critical elliptic equation. J Math Anal Appl, 2003, 284(2):724-732[38] Schneider M. Compact embeddings and indefinite semilinear elliptic problems. Nonlinear Anal, 2002, 51(2):283-303[39] Brezis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3):486-490 |
[1] | Siwar AMMAR, Mokhles HAMMAMI. BLOWING UP AND MULTIPLICITY OF SOLUTIONS FOR A FOURTH-ORDER EQUATION WITH CRITICAL NONLINEARITY [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1511-1546. |
[2] | DENG Zhi-Ying, HUANG Yi-Sheng. ON POSITIVE G-SYMMETRIC SOLUTIONS OF A WEIGHTED QUASILINEAR ELLIPTIC EQUATION WITH CRITICAL HARDY-SOBOLEV EXPONENT [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1619-1633. |
[3] | FAN Hai-Ning, LIU Xiao-Chun. MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF QUASI-LINEAR ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT [J]. Acta mathematica scientia,Series B, 2014, 34(4): 1111-1126. |
[4] | Wael ABDELHEDI. CONCENTRATION OF SOLUTIONS FOR THE MEAN CURVATURE PROBLEM [J]. Acta mathematica scientia,Series B, 2013, 33(3): 631-642. |
[5] | JIANG Yong-Sheng, ZHOU Huan-Song. BOUND STATES FOR A STATIONARY NONLINEAR SCHRÖDINGER-POISSON SYSTEM WITH SIGN-CHANGING POTENTIAL IN R3 [J]. Acta mathematica scientia,Series B, 2009, 29(4): 1095-1104. |
[6] | Han Pigong. NEUMANN PROBLEMS OF A CLASS OF ELLIPTIC EQUATIONS WITH DOUBLY CRITICAL SOBOLEV EXPONENTS [J]. Acta mathematica scientia,Series B, 2004, 24(4): 633-638. |
[7] |
FU Gong-Zhuo, CHEN Yao-Tian.
EXISTENCE OF INFINITELY MANY SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT [J]. Acta mathematica scientia,Series B, 2004, 24(3): 395-402. |
[8] | TAN Zhong, YAO Zheng-An. THE EXISTENCE OF MULTIPLE SOLUTIONS OF p-LAPLACIAN ELLIPTIC EQUATION [J]. Acta mathematica scientia,Series B, 2001, 21(2): 203-212. |
|