Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (4): 1675-1716.doi: 10.1007/s10473-023-0415-x
Previous Articles Next Articles
Haitao WANG1, Xiongtao ZHANG2,†
Received:
2021-12-09
Published:
2023-08-08
Contact:
†Xiongtao ZHANG, E-mail: About author:
Haitao WANG, E-mail: haitallica@sjtu.edu.cn
Supported by:
Haitao WANG, Xiongtao ZHANG. THE REGULARITY AND UNIQUENESS OF A GLOBAL SOLUTION TO THE ISENTROPIC NAVIER-STOKES EQUATION WITH ROUGH INITIAL DATA∗[J].Acta mathematica scientia,Series B, 2023, 43(4): 1675-1716.
[1] Liu T P, Yu S H. Navier-Stokes equations in gas dynamics: Green's function, singularity,well-posedness. Comm Pure Appl Math, 2022, 75(2): 223-348 [2] Smoller J.Shock Waves and Reaction-Diffusion Equations. Berlin: Springer, 1994 [3] Nash J. Le problȲme de Cauchy pour les ȳquations différentielles d'un fluide gȳnȳral. Bulletin de la Soc Math de France (in French), 1962, 90: 487-497 [4] Nash J. Continuity of solutions of parabolic and elliptic equations. Amer J Math, 1958, 80(4): 931-954 [5] Itaya N. On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluid. Kodai Math Sem Rep, 1971, 23: 60-120 [6] Kanel'Ya I. On a model system of equations for one-dimensional gas motion. Diff Uravn (in Russian), 1968, 4: 374-380 [7] Kazhikhov A V, Shelukhin V V. Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. Prikl Mat Meh (in Russian), 1977, 41(2): 282-291 [8] Matsumura A, Nishida T. The initial value problem for the equations of motion of viscous and heat conductive gases. J Math Kyoto Univ, 1980, 20(1): 67-104 [9] Shizuta Y, Kawashima S. Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math J, 1985, 14: 249-275 [10] Kawashima S. Large-time behavior of solutions to hyperbolic parabolic systems of conservation laws and applications. Proceedings of the Royal Society of Edinburgh, 1987, 106: 169-194 [11] Hoff D. Global existence for 1D compressible isentropic Navier-Stokes equations with large initial data. Trans Amer Math Soc, 1987, 303: 169-181 [12] Huang X D, Li J. Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations. Arch Ration Mech Anal, 2018, 227(3): 995-1059 [13] Jiu Q S, Li M J, Ye Y L. Global classical solution of the Cauchy problem to 1D compressible Navier-Stokes equations with large initial data. J Differential Equations2014, 257: 311-350 [14] Jiu Q S, Wang Y, Xin Z P. Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum. J Math Fluid Mech, 2014, 16: 483-521 [15] Mellet A, Vasseur A. Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J Math Anal, 2008, 39: 1344-1365 [16] Hoff D. Discontinuous solutions of the Navier-Stokes equations for compressible flow. Arch Rational Mech Anal, 1991, 114: 15-46 [17] Hoff D. Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data. J Differential Equations, 1995, 120: 215-254 [18] Lions P L.Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models. New York: Oxford University Press, 1996 [19] Feireisl E.Dynamics of Viscous Compressible Fluids. Oxford: Oxford University Press, 2004 [20] Chen G Q, Hoff D, Trivisa K. Global solutions of the compressible navier-stokes equations with larger discontinuous initial data. Commun Partial Diff Equations, 2000, 25(11): 2232-2257 [21] Dafermos C M, Hsiao L. Development of singularities in solutions of the equations of nonlinear thermoelasticity. Quart Appl Math, 1986, 44: 462-474 [22] Hsiao L, Jiang S. Nonlinear hyperbolic-parabolic coupled systems. Handbook of Differential Equations: Evolutionary Equations, 2002, 1: 287-384 [23] Novotn$#221; A, Stra͓raba I. Introduction to the Mathematical Theory of Compressible Flow. Oxford: Oxford University Press, 2004 [24] Liu T P. Pointwise convergence to shock waves for viscous conservation laws. Comm Pure Appl Math, 1997, 50(12): 1113-1182 [25] Liu T P, Yu S H. The Green's function and large-time behavior of solutions for the one-dimensional Boltzmann equation. Comm Pure Appl Math, 2004, 57(12): 1542-1608 [26] Liu T P, Yu S H. Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation. Comm Pure Appl Math, 2007, 60(3): 295-356 [27] Liu T P, Zeng Y.Large Time Behavior of Solutions for General Quasilinear Hyperbolic-Parabolic Systems of Conservation Laws. Providence, RI: Amer Math Soc, 1997 |
[1] | Leilei CUI, Jiaxing GUO, Gongbao LI. THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF TYPE EQUATIONS* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1131-1160. |
[2] | Bo Chen, Zhengmao Chen, Junhui Xie. PROPERTIES OF SOLUTIONS TO A HARMONIC-MAPPING TYPE EQUATION WITH A DIRICHLET BOUNDARY CONDITION* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1161-1174. |
[3] | Yuxi Hu, Zhao Wang. THE LOW MACH NUMBER LIMIT FOR ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH A REVISED MAXWELL'S LAW* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1239-1250. |
[4] | Xiaoping Zhai, Xin Zhong. GLOBAL SOLUTIONS TO THE 2D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH SOME LARGE INITIAL DATA* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1251-1274. |
[5] | Hongxia Lin, Sen Liu, Heng Zhang, Ru Bai. GLOBAL REGULARITY OF 2D INCOMPRESSIBLE MAGNETO-MICROPOLAR FLUID EQUATIONS WITH PARTIAL VISCOSITY* [J]. Acta mathematica scientia,Series B, 2023, 43(3): 1275-1300. |
[6] | Boling Guo, Yamin Xiao. THE EXISTENCE OF WEAK SOLUTIONS AND PROPAGATION REGULARITY FOR A GENERALIZED KDV SYSTEM* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 942-958. |
[7] | Hakho Hong. THE EXISTENCE OF GLOBAL SOLUTIONS FOR THE FULL NAVIER-STOKES-KORTEWEG SYSTEM OF VAN DER WAALS GAS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(2): 469-491. |
[8] | Xiangkai Lian, Qiang Tao, Zheng-an Yao. ON LOCAL CONTROLLABILITY FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY DEPENDENT VISCOSITIES* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 675-685. |
[9] | Jianli XIANG, Guozheng YAN. UNIQUENESS OF INVERSE TRANSMISSION SCATTERING WITH A CONDUCTIVE BOUNDARY CONDITION BY PHASELESS FAR FIELD PATTERN* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 450-468. |
[10] | Jinlu LI, Zhaoyang YIN, Xiaoping ZHAI. GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2131-2148. |
[11] | Yujuan CHEN, Lei WEI, Yimin ZHANG. THE ASYMPTOTIC BEHAVIOR AND SYMMETRY OF POSITIVE SOLUTIONS TO p-LAPLACIAN EQUATIONS IN A HALF-SPACE [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2149-2164. |
[12] | Myong-Hwan RI, Reinhard FARWIG. MAXIMAL $L^1$-REGULARITY OF GENERATORS FOR BOUNDED ANALYTIC SEMIGROUPS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1261-1272. |
[13] | Jiaxing HUANG, Tuen Wai NG. A UNIQUENESS THEOREM FOR HOLOMORPHIC MAPPINGS IN THE DISK SHARING TOTALLY GEODESIC HYPERSURFACES [J]. Acta mathematica scientia,Series B, 2022, 42(4): 1631-1644. |
[14] | Salvatore LEONARDI, Nikolaos S. PAPAGEORGIOU. ARBITRARILY SMALL NODAL SOLUTIONS FOR PARAMETRIC ROBIN (p,q)-EQUATIONS PLUS AN INDEFINITE POTENTIAL [J]. Acta mathematica scientia,Series B, 2022, 42(2): 561-574. |
[15] | Yanqing WANG, Wei WEI, Gang WU, Yulin YE. ON CONTINUATION CRITERIA FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN LORENTZ SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(2): 671-689. |
|