Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (1): 184-204.doi: 10.1007/s10473-023-0112-9
Previous Articles Next Articles
Duong Viet Thong1,†, Vu Tien Dung2
Received:
2021-07-06
Revised:
2021-11-03
Published:
2023-03-01
Contact:
†Duong Viet THONG. E-mail: duongvietthong@tdmu.edu.vn
About author:
Duong Viet Thong, E-mail: duzngvt@gmail.com
Duong Viet Thong, Vu Tien Dung. A RELAXED INERTIAL FACTOR OF THE MODIFIED SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDO MONOTONE VARIATIONAL INEQUALITIES IN HILBERT SPACES*[J].Acta mathematica scientia,Series B, 2023, 43(1): 184-204.
[1] Alvarez F, Attouch H.An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal, 2001, 9: 3-11 [2] Anh P K, Thong D V, Vinh N T.Improved inertial extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 2020, 71(3): 505-528 [3] Antipin A S.On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Mat Metody, 1976, 12: 1164-1173 [4] Avriel M, Diewert W E, Schaible S, Zang I. Generalized Concavity. Society for Industrial and Applied Mathematics, 2010 [5] Baiocchi C, Capelo A.Variational and Quasivariational Inequalities, Applications to Free Boundary Prob- lems. New York: Wiley, 1984 [6] Cai X, Gu G, He B.On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput Optim Appl, 2014, 57: 339-363 [7] Cai G, Shehu Y, Iyiola O S.Inertial Tseng’s extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. J Ind Manag Optim, 2022, 18(4): 2873-2902 [8] Cegielski A.Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lecture Notes in Mathematics, Vol 2057. Berlin: Springer, 2012 [9] Censor Y, Gibali A, Reich S.The subgradient extragradient method for solving variational inequalities in Hilbert space. J Optim Theory Appl, 2011, 148: 318-335 [10] Censor Y, Gibali A, Reich S.Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim Meth Softw, 2011, 26: 827-845 [11] Censor Y, Gibali A, Reich S.Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization, 2011, 61: 1119-1132 [12] Cottle R W, Yao J C.Pseudo-monotone complementarity problems in Hilbert space. J Optim Theory Appl, 1992, 75: 281-295 [13] Denisov S V, Semenov V V, Chabak L M.Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal, 2015, 51: 757-765 [14] Dong L Q, Cho J Y, Zhong L L, Rassias M Th.Inertial projection and contraction algorithms for variational inequalities. J Glob Optim, 2018, 70: 687-704 [15] Dong Q L, Gibali A, Jiang D.A modified subgradient extragradient method for solving the variational inequality problem. Numer Algorithms, 2018, 79: 927-940 [16] Gibali A, Reich S, Zalas R.Iterative methods for solving variational inequalities in Euclidean space. J Fixed Point Theory Appl, 2015, 17: 775-811 [17] Gibali A, Reich S, Zalas R.Outer approximation methods for solving variational inequalities in Hilbert space. Optimization, 2017, 66: 417-437 [18] Gibali A, Iyiola O S, Akinyemi L, Shehu Y.Projected-reflected subgradient extragradient method and its real-world applications. Symmetry, 2021, 13(3): 489 [19] Facchinei F, Pang J S.Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vols I and II. New York: Springer, 2003 [20] Fichera G.Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad Naz Lincei, VIII Ser, Rend Cl Sci Fis Mat Nat, 1963, 34: 138-142 [21] Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry,Nonexpansive Mappings. New York: Marcel Dekker, 1984 [22] Hadjisavvas N, Komlosi S, Schaible S, eds. Handbook on Generalized Convexity and Generalized Mono- tonicity, Nonconvex optimization and its Applications, Vol 76. New York: Springer, 2005 [23] He B S.A class of projection and contraction methods for monotone variational inequalities. Appl Math Optim, 1997, 35: 69-76 [24] Karamardian S, Schaible S.Seven kinds of monotone maps. J Optim Theory Appl, 1990, 66: 37-46 [25] Kim D S, Vuong P T, Khanh P D.Qualitative properties of strongly pseudomonotone variational inequal- ities. Optim Lett, 2016, 10: 1669-1679 [26] Kinderlehrer D, Stampacchia G.An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980 [27] Konnov I V.Combined Relaxation Methods for Variational Inequalities. Berlin: Springer-Verlag, 2001 [28] Korpelevich G M.The extragradient method for finding saddle points and other problems. Ekonomika i Mat Metody, 1976, 12: 747-756 [29] Liu H, Yang J.Weak convergence of iterative methods for solving quasimonotone variational inequalities. Comput Optim Appl, 2020, 77(2): 491-508 [30] Shehu Y, Iyiola O S.Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence. Appl Numer Math, 2020, 157: 315-337 [31] Shehu Y, Iyiola O S, Reich S.A modified inertial subgradient extragradient method for solving variational inequalities. Optim Eng, 2021, 23(1): 421-449 [32] Shehu Y, Iyiola O S, Yao J C.New projection methods with inertial steps for variational inequalities. Optimization, 2021, DOI:10.1080/02331934.2021.1964079 [33] Opial Z.Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Amer Math Soc, 1967, 73: 591-597 [34] Ortega J M, Rheinboldt W C.Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press, 1970 [35] Reich S, Thong D V, Cholamjiak P, et al.Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space. Numer Algor, 2021, 88(2): 813-835 [36] Shehu Y, Liu L, Mu X, Dong Q L.Analysis of versions of relaxed inertial projection and contraction method. Applied Numerical Mathematics, 2021, 165: 1-21 [37] Stampacchia G.Formes bilineaires coercitives sur les ensembles convexes. C R Acad Sci, 1964, 258: 4413-4416 [38] Sun D F.A class of iterative methods for solving nonlinear projection equations. J Optim Theory Appl, 1996, 91: 123-140 [39] Thong D V, Hieu D V.Modified subgradient extragradient method for variational inequality problems. Numer Algorithms, 2018, 79: 597-610 [40] Thong D V, Vuong P T.Modified Tseng’s extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 2019, 68: 2207-2226 [41] Thong D V, Vuong P T.Improved subgradient extragradient methods for solving pseudomonotone varia- tional inequalities in Hilbert spaces. Applied Numerical Mathematics, 2021, 163: 221-238 [42] Vuong P T.On the weak convergence of the extragradient method for solving pseudo-monotone variational inequalities. J Optim Theory Appl, 2018, 176: 399-409 [43] Vuong P T, Shehu Y.Convergence of an extragradient-type method for variational inequality with appli- cations to optimal control problems. Numer Algorithms, 2019, 81: 269-291 |
[1] | Grace Nnennaya OGWO, Chinedu IZUCHUKWU, Oluwatosin Temitope MEWOMO. RELAXED INERTIAL METHODS FOR SOLVING SPLIT VARIATIONAL INEQUALITY PROBLEMS WITHOUT PRODUCT SPACE FORMULATION [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1701-1733. |
[2] | Yingqiu LI, Xulan HUANG, Zhaohui PENG. CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT [J]. Acta mathematica scientia,Series B, 2022, 42(3): 957-974. |
[3] | Nguyen Xuan LINH, Duong Viet THONG, Prasit CHOLAMJIAK, Pham Anh TUAN, Luong Van LONG. STRONG CONVERGENCE OF AN INERTIAL EXTRAGRADIENT METHOD WITH AN ADAPTIVE NONDECREASING STEP SIZE FOR SOLVING VARIATIONAL INEQUALITIES [J]. Acta mathematica scientia,Series B, 2022, 42(2): 795-812. |
[4] | Mehdi MOHAMMADI, G. Zamani ESKANDANI. A STRONG CONVERGENCE THEOREM FOR QUASI-EQUILIBRIUM PROBLEMS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(1): 221-232. |
[5] | Wenxuan ZHENG, Zhong TAN. THE DECAY ESTIMATES FOR MAGNETOHYDRODYNAMIC EQUATIONS WITH COULOMB FORCE [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1928-1940. |
[6] | Yekini SHEHU. SINGLE PROJECTION ALGORITHM FOR VARIATIONAL INEQUALITIES IN BANACH SPACES WITH APPLICATION TO CONTACT PROBLEM [J]. Acta mathematica scientia,Series B, 2020, 40(4): 1045-1063. |
[7] | Shifeng GENG, Yanjuan TANG. CONVERGENCE RATES TO NONLINEAR DIFFUSIVE WAVES FOR SOLUTIONS TO NONLINEAR HYPERBOLIC SYSTEM [J]. Acta mathematica scientia,Series B, 2019, 39(1): 46-56. |
[8] | Zhiqiang GAO. A NOTE ON EXACT CONVERGENCE RATE IN THE LOCAL LIMIT THEOREM FOR A LATTICE BRANCHING RANDOM WALK [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1259-1268. |
[9] | Yekini SHEHU, Olaniyi. S. IYIOLA. CONVERGENCE OF HYBRID VISCOSITY AND STEEPEST-DESCENT METHODS FOR PSEUDOCONTRACTIVE MAPPINGS AND NONLINEAR HAMMERSTEIN EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 610-626. |
[10] | Kazuhide NAKAJO. IMPROVED GRAOIENT METHOD FOR MONOTONE AND LIPSCHITZ CONTINUOUS MAPPINGS IN BANACH SPACES [J]. Acta mathematica scientia,Series B, 2017, 37(2): 342-354. |
[11] | Jing ZHAO, Shengnan WANG. VISCOSITY APPROXIMATION METHODS FOR THE SPLIT EQUALITY COMMON FIXED POINT PROBLEM OF QUASI-NONEXPANSIVE OPERATORS [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1474-1486. |
[12] | Mina JIANG, Suhua LAI, Haiyan YIN, Changjiang ZHU. THE STABILITY OF STATIONARY SOLUTION FOR OUTFLOW PROBLEM ON THE NAVIER-STOKES-POISSON SYSTEM [J]. Acta mathematica scientia,Series B, 2016, 36(4): 1098-1116. |
[13] | Y. SHEHU, O. T. MEWOMO, F. U. OGBUISI. FURTHER INVESTIGATION INTO APPROXIMATION OF A COMMON SOLUTION OF FIXED POINT PROBLEMS AND SPLIT FEASIBILITY PROBLEMS [J]. Acta mathematica scientia,Series B, 2016, 36(3): 913-930. |
[14] | Jinfang TANG, Shih-sen CHANG, Min LIU. GENERAL SPLIT FEASIBILITY PROBLEMS FOR TWO FAMILIES OF NONEXPANSIVE MAPPINGS IN HILBERT SPACES [J]. Acta mathematica scientia,Series B, 2016, 36(2): 602-613. |
[15] | Zhengzheng CHEN, Xiaojuan CHAI, Wenjuan WANG. CONVERGENCE RATE OF SOLUTIONS TO STRONG CONTACT DISCONTINUITY FOR THE ONE-DIMENSIONAL COMPRESSIBLE RADIATION HYDRODYNAMICS MODEL [J]. Acta mathematica scientia,Series B, 2016, 36(1): 265-282. |
|