Acta mathematica scientia,Series B ›› 2021, Vol. 41 ›› Issue (4): 1385-1404.doi: 10.1007/s10473-021-0421-9
• Articles • Previous Articles
Jinling ZHOU, Xinsheng MA, Yu YANG, Tonghua ZHANG
Received:
2020-03-23
Revised:
2020-10-01
Online:
2021-08-25
Published:
2021-09-01
Contact:
Yu YANG
E-mail:yangyu@lixin.edu.cn
CLC Number:
Jinling ZHOU, Xinsheng MA, Yu YANG, Tonghua ZHANG. A DIFFUSIVE SVEIR EPIDEMIC MODEL WITH TIME DELAY AND GENERAL INCIDENCE[J].Acta mathematica scientia,Series B, 2021, 41(4): 1385-1404.
[1] Kribs-Zaleta C M, Velasco-Hernández J X. A simple vaccination model with multiple endemic states. Mathematical Biosciences, 2000, 164(2):183-201 [2] Arino J, McCluskey C C, van den Driess P. Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM Journal on Applied Mathematics, 2003, 64(1):260-276 [3] Li J, Ma Z, Zhou Y. Global analysis of SIS epidemic model with a simple vaccination and multiple endemic equilibria. Acta Mathematica Scientia, 2006, 26B(1):83-93 [4] Liu X, Takeuchi Y, Iwami S. SVIR epidemic models with vaccination strategies. Journal of Theoretical Biology, 2008, 253(1):1-11 [5] Li J, Yang Y. SIR-SVS epidemic models with continuous and impulsive vaccination strategies. Journal of Theoretical Biology, 2011, 280(1):108-116 [6] Zhu Q, Hao Y, Ma J, Yu S, Wang Y. Surveillance of hand, foot, and mouth disease in mainland china (2008-2009). Biomedical and Environmental Sciences, 2011, 24(4):349-356 [7] Martcheva M. Avian flu:modeling and implications for control. Journal of Biological Systems, 2014, 22(1):151-175 [8] Wang W, Ruan S. Simulating the SARS outbreak in beijing with limited data. Journal of Theoretical Biology, 2004, 227(3):369-379 [9] Liljeros F, Edling C R, Amaral L A N. Sexual networks:implications for the transmission of sexually transmitted infections. Microbes and Infection, 2003, 5(2):189-196 [10] Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological model. Journal of Mathematical Biology, 1986, 23(2):187-204. 18 [11] Capasso V, Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model. Mathematical Biosciences, 1978, 42(1/2):43-61 [12] Hattaf K, Lashari A A, Louartassi Y, Yousfi N. A delayed SIR epidemic model with general incidence rate. Electronic Journal of Qualitative Theory of Differential Equations, 2013(3):1-9 [13] Wang L, Liu Z, Zhang X. Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence. Applied Mathematics and Computation, 2016, 284:47-65 [14] Hattaf K. Global stability and Hopf bifurcation of a generalized viral infection model with multi-delays and humoral immunity. Physica A:Statal Mechanics and its Applications, 2020, 545:123689 [15] Wang J, Huang G, Takeuchi Y, Liu S. SVEIR epidemiological model with varying infectivity and distributed delays. Mathematical Biosciences and Engineering, 2011, 8(3):875-888 [16] Xu R. Global stability of a delayed epidemic model with latent period and vaccination strategy. Applied Mathematical Modelling, 2012, 36(11):5293-5300 [17] Duan X, Yuan S, Li X. Global stability of an SVIR model with age of vaccination. Applied Mathematics and Computation, 2014, 226:528-540 [18] Meng X, Chen L, Wu B. A delay SIR epidemic model with pulse vaccination and incubation times. Nonlinear Analysis:Real World Applications, 2010, 11(1):88-98 [19] Gao S, Chen L, Nieto J J, Torres A. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine, 2006, 24(35/36):6037-6045 [20] Zhang T, Zhang T Q, Meng X. Stability analysis of a chemostat model with maintenance energy. Applied Mathematics Letters, 2017, 68:1-7 [21] Zhang T, Liu X, Meng X, Zhang T Q. Spatio-temporal dynamics near the steady state of a planktonic system. Computers and Mathematics with Applications, 2018, 75(12):4490-4504 [22] Hattaf K, Yousfi N. Global stability for reaction-diffusion equations in biology. Computers Mathematics with Applications, 2013, 66(8):1488-1497 [23] Webby R J, Webster R G. Are we ready for pandemic influenza? Science, 2003, 302:1519-1522 [24] Xu Z, Ai C. Traveling waves in a diffusive influenza epidemic model with vaccination. Applied Mathematical Modelling, 2016, 40(15/16):7265-7280 [25] Abdelmalek S, Bendoukha S. Global asymptotic stability of a diffusive SVIR epidemic model with immigration of individuals. Electronic Journal of Differential Equations, 2016, 2016(129/324):1-14 [26] Xu Z, Xu Y, Huang Y. Stability and traveling waves of a vaccination model with nonlinear incidence. Computers and Mathematics with Applications, 2018, 75(2):561-581 [27] Mickens R E. Nonstandard Finite Difference Models of Differential Equations. World Scientific, December 1993 [28] Arenas A J, Morano J A, Cortés J C. Non-standard numerical method for a mathematical model of RSV epidemiological transmission. Computers and Mathematics with Applications, 2008, 56(3):670-678 [29] Hattaf K, Yousfi N. Global properties of a discrete viral infection model with general incidence rate. Mathematical Methods in the Applied Sciences, 2016, 39(5):998-1004 [30] Hattaf K, Yousfi N. A numerical method for delayed partial differential equations describing infectious diseases. Computers and Mathematics with Applications, 2016, 72(11):2741-2750 [31] Liu J, Peng B, Zhang T. Effect of discretization on dynamical behavior of SEIR and SIR models with nonlinear incidence. Applied Mathematics Letters, 2015, 39:60-66 [32] Muroya Y, Bellen A, Enatsu Y, Nakata Y. Global stability for a discrete epidemic model for disease with immunity and latency spreading in a heterogeneous host population. Nonlinear Analysis:Real World Applications, 2013, 13(1):258-274 [33] Qin W, Wang L, Ding X. A non-standard finite difference method for a hepatitis B virus infection model with spatial diffusion. Journal of Difference Equations and Applications, 2014, 20(12):1641-1651 [34] Geng Y, Xu J. Stability preserving NSFD scheme for a multi-group SVIR epidemic model. Mathematical Methods in the Applied Sciences, 2017, 40(13):4917-4927 [35] Ding D, Ma Q, Ding X. A non-standard finite difference scheme for an epidemic model with vaccination. Journal of Difference Equations and Applications, 2013, 19(2):179-190 [36] Yang Y, Zhou J, Ma X, Zhang T. Nonstandard finite difference scheme for a diffusive within-host virus dynamics model with both virus-to-cell and cell-to-cell transmissions. Computers and Mathematics with Applications, 2016, 72(4):1013-1020 [37] Zhou J, Yang Y, Zhang T. Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate. Journal of Mathematical Analysis and Applications, 2018, 466(1):835-859 [38] Martin R H, Smith H L. Abstract functional differential equations and reaction-diffusion systems. Transactions of the American Mathematical Society, 1990, 321(1):1-44 [39] Fujimoto T, Ranade R R. Two characterizations of inverse-positive matrices:the Hawkins-Simon condition and the Le Chatelier-Braun principle. The Electronic Journal of Linear Algebra, 2004, 11:59-65 |
[1] | Qixing HAN, Daqing JIANG. DYNAMIC FOR A STOCHASTIC MULTI-GROUP AIDS MODEL WITH SATURATED INCIDENCE RATE [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1883-1896. |
[2] | Liya LIU, Daqing JIANG, Tasawar HAYAT, Bashir AHMAD. DYNAMICS OF A HEPATITIS B MODEL WITH SATURATED INCIDENCE [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1731-1750. |
[3] | Qun LIU, Daqing JIANG, Ningzhong SHI, Tasawar HAYAT, Ahmed ALSAEDI. DYNAMICAL BEHAVIOR OF A STOCHASTIC HBV INFECTION MODEL WITH LOGISTIC HEPATOCYTE GROWTH [J]. Acta mathematica scientia,Series B, 2017, 37(4): 927-940. |
[4] | R. AGARWAL, S. HRISTOVA, P. KOPANOV, D. O'REGAN. IMPULSIVE DIFFERENTIAL EQUATIONS WITH GAMMA DISTRIBUTED MOMENTS OF IMPULSES AND P-MOMENT EXPONENTIAL STABILITY [J]. Acta mathematica scientia,Series B, 2017, 37(4): 985-997. |
[5] | Alexander ALEKSANDROV, Elena ALEKSANDROVA, Alexey ZHABKO, Yangzhou CHEN. PARTIAL STABILITY ANALYSIS OF SOME CLASSES OF NONLINEAR SYSTEMS [J]. Acta mathematica scientia,Series B, 2017, 37(2): 329-341. |
[6] | Yoshiaki MUROYA, Eleonora MESSINA, Elvira RUSSO, Antonia VECCHIO. COEXISTENCE FOR MULTIPLE LARGEST REPRODUCTION RATIOS OF A MULTI-STRAIN SIS EPIDEMIC MODEL [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1524-1530. |
[7] | M. YOUSEFNEZHAD, S. A. MOHAMMADI. STABILITY OF A PREDATOR-PREY SYSTEM WITH PREY TAXIS IN A GENERAL CLASS OF FUNCTIONAL RESPONSES [J]. Acta mathematica scientia,Series B, 2016, 36(1): 62-72. |
[8] | M. SYED ALI. STOCHASTIC STABILITY OF UNCERTAIN RECURRENT NEURAL NETWORKS WITH MARKOVIAN JUMPING PARAMETERS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 1122-1136. |
[9] | Yoshiaki MUROYA, Huaixing LI, Toshikazu KUNIYA. ON GLOBAL STABILITY OF A NONRESIDENT COMPUTER VIRUS MODEL [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1427-1445. |
[10] | Yoshiaki MUROYA, Yoichi ENATSU, Toshikazu KUNIYA. GLOBAL STABILITY OF EXTENDED MULTI-GROUP SIR EPIDEMIC MODELS WITH PATCHES THROUGH MIGRATION AND CROSS PATCH INFECTION [J]. Acta mathematica scientia,Series B, 2013, 33(2): 341-361. |
[11] | Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. GLOBAL STABILITY OF SIRS EPIDEMIC MODELS WITH A CLASS OF NONLINEAR INCIDENCE RATES AND DISTRIBUTED DELAYS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 851-865. |
[12] | QIAO Mei-Hong, QI Huan, CHEN Ying-Chun. QUALITATIVE ANALYSIS OF HEPATITIS B VIRUS INFECTION MODEL WITH IMPULSIVE VACCINATION AND TIME DELAY [J]. Acta mathematica scientia,Series B, 2011, 31(3): 1020-1034. |
[13] | Zhang Yu; Sun Jitao. EVENTUAL STABILITY OF IMPULSIVE DIFFERENTIAL SYSTEMS [J]. Acta mathematica scientia,Series B, 2007, 27(2): 373-380. |
[14] | Zhen Jin; Ma Zhien; Han Maoan. GLOBAL STABILITY OF AN SIRS EPIDEMIC MODEL WITH DELAYS [J]. Acta mathematica scientia,Series B, 2006, 26(2): 291-306. |
[15] | Li Jianquan; Ma Zhien; Zhou Yicang. GLOBAL ANALYSIS OF SIS EPIDEMIC MODEL WITH A SIMPLE VACCINATION AND MULTIPLE ENDEMIC EQUILIBRIA [J]. Acta mathematica scientia,Series B, 2006, 26(1): 83-93. |
|