[1] Enatsu Y, Nakata Y, Muroya Y. Lyapunov functional techniques for the global stability analysis of delayed SIRS epidemic model. Nonlinear Analysis RWA, 2012, 13: 2120–2133
[2] Gan C, Yang X, Liu W. A propagation model of computer virus with nonlinear vaccination probability. Commun Nonlinear Sci Numer Simulat, 2014, 19(1): 92–100
[3] Gan C, Yang X, Liu W, Zhu Q, Zhang X. Propagation of computer virus under human intervention: a dynamical model. Discrete Dyn Nat Soc, 2012, Article ID 106950
[4] Kephart J O, White S R. Measuring and modeling computer virus prevalence. IEEE Computer Society Symposium on Research in Security and Privacy, 1993: 2–15
[5] Kephart J O, White S R, Chess D M. Computers and epidemiology. IEEE Spectrum, 1993, 30: 20–26
[6] Mena-Lorcat J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes. J Math Biol, 1992, 30: 693–716
[7] Muroya Y, Enatsu E, Li H. Global stability of a delayed SIRS computer virus propagation model. Inter J Comput Math, 2013, doi: 10.1080/00207160.2013.790534
[8] Muroya Y, Li H, Kuniya T. Complete global analysis of an SIRS epidemic model with graded cure and incomplete recovery rates. J Math Anal Appl, 2014, 410(2): 719–732
[9] Murray W. The application of epidemiology to computer viruses. Comput Security, 1988, 7: 139–150
[10] Piqueira J R C, Arauio V O. A modified epidemiological model for computer viruses. Appl Math Comput, 2009, 213: 355–360
[11] Ren J G, Yang X F, Yang L X, Xu Y H, Yang F Z. A delayed computer virus propagation model and its dynamics. Chaos Solitons & Fractals, 2012, 45: 74–79
[12] Ren J G, Yang X F, Zhu Q Y, Yang L X, Zhang C M. A novel computer virus model and its dynamics. Nonlinear Anal RWA, 2012, 13: 376–384
[13] Wierman J C, Marchette D J. Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction. Computational Statistics & Data Analysis, 2004, 45: 3–23
[14] Yang L X, Yang X. The spread of computer viruses under the influence of removable storage devices. Appl Math Comput, 2012, 219(8): 3914–3922
[15] Yang L X, Yang X, Liu J, Zhu Q, Gan C. Epidemics of computer viruses: a complex-network approach. Appl Math Comput, 2013, 219(16): 8705–8717
[16] Yang L X, Yang X, Tang Y Y. Qualitative analysis of a nonresident computer virus model. Preprint [17] Yang L X, Yang X, Wen L, Liu J. Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability. Discrete Dyn Nat Soc, 2012, Article ID 693695
[18] Yang L X, Yang X, Wen L, Liu J. A novel computer virus propagation model and its dynamics. Int J Comput Math, 2012, 89(17): 2307–2314
[19] Yang L X, Yang X, Zhu Q, Wen L. A computer virus model with graded cure rates. Nonlinear Anal RWA, 2013, 14: 414–422
[20] Yang X, Mishra B K, Liu Y. Computer virus: theory, model and methods. Discrete Dyn Nat Soc, 2012, Article ID 473508
[21] Yang X, Yang L X. Towards the epidemiological modeling of computer viruses. Discrete Dyn Nat Soc, 2012, Article ID 259671
[22] Zhu Q, Yang X, Ren J. Modeling and analysis of the spread of computer virus. Commun Nonlinear Sci Numer Simulat, 2012, 17(12): 5117–5124
[23] Zhu Q, Yang X, Yang L X, Zhang C. Optimal control of computer virus under a delayed model. Appl Math Comput, 2012, 218(23): 11613–11619 |