Acta mathematica scientia,Series B ›› 2019, Vol. 39 ›› Issue (1): 259-283.doi: 10.1007/s10473-019-0120-y
• Articles • Previous Articles Next Articles
Jie PAN, Li FANG, Zhenhua GUO
Received:
2017-04-08
Revised:
2018-10-29
Online:
2019-02-25
Published:
2019-03-13
Contact:
Zhenhua GUO
E-mail:zhguo@nwu.edu.cn
Supported by:
Jie PAN, Li FANG, Zhenhua GUO. STABILITY OF BOUNDARY LAYER TO AN OUTFLOW PROBLEM FOR A COMPRESSIBLE NON-NEWTONIAN FLUID IN THE HALF SPACE[J].Acta mathematica scientia,Series B, 2019, 39(1): 259-283.
[1] Il'in A M, Oleînik O A. Asymptotic behavior of solutions of the Cauchy problem for some quasi-linear equations for large values of the time (Russian). Mat Sb, 1960, 51(93):191-216 [2] Bellout H, Bloom F, Nečas J. Existence, uniqueness and stability of solutions to the initial boundary value problem for bipolar viscous fluids. Differential Integral Equations, 1995, 8(2):453-464 [3] Fang L, Guo Z H. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure and Applied Analysis, 2017, 16(1):209-242 [4] Fang L, Li Z L. On the existence of local classical solution for a class of one-dimensional compressible non-Newtonian fluids. Acta Math Sci, 2015, 35B(1):157-181 [5] Feireisl E, Liao X, Málek J. Global weak solutions to a class of non-Newtonian compressible fluids. Math Methods Appl Sci, 2015, 38(16):3482-3494 [6] Huang F M, Qin X H. Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation. J Differential Equation, 2009, 246(10):4077-4096 [7] Kanel' J I. On a model system of equations of one-dimensional gas motion. Differential Equation, 1968, 4:374-380 [8] Kawashima S C, Matsusmura A. Asymptotic stability of traveling wave solutions of systems for onedimensional gas motion. Commun Math Phys, 1985, 101(1):97-127 [9] Kawashima S C, Nishibata S, Zhu P. Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space. Commun Math Phys, 2003, 240(3):483-500 [10] Liu T P, Smoller J. On the vacuum state for the isentropic gas dynamics equations. Adv Appl Math, 1980, 1(4):345-359 [11] Liu T P. Behaviors of solutions for the Burgers equations with boundary corresponding to rarefaction waves. Nonlinear Stud, 2006, 29(29):293-308 [12] Málek J, Nečas J, Rokyta M, R·ůzička M. Weak and Measure-Valued Solution to Evolutionary PDEs. Chapman and Hall, 1996 [13] Mamontov A E. Global regularity estimates for multidimensional equations of compressible non-Newtonian fluids. Mathematical Notes, 2000, 68(3):312-325 [14] Matsumura A. Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas. Nonlinear Analysis, 2001, 47(6):4269-4282 [15] Matsumura A, Nishihara K J. Asymptotics toward the rarefaction waves of the solutions of a onedimensional model system for compressible viscous gas. Japan J Indust Appl Math, 1986, 3(1):1-13 [16] Shi X D. On the stability of rarefaction wave solutions for viscous psystem with boundary effect. Acta Mathematicae Applicatae Sinica, English Series, 2003, 19(2):341-352 [17] Shi X D, Wang, T, Zhang Z. Asymptotic stability for one-dimensional motion of non-Newtonian compressible fluids. Acta Mathematicae Applicatae Sinica, English Series, 2014, 30(1):99-110 [18] Zhikov V V, Pastukhova S E. On the solvability of the Navier-Stokes system for a compressible nonNewtonian fluid (Russian). Dokl Math, 2009, 73(3):403-407 [19] Yuan H J, Wang C J. Unique solvability for a class of full non-Newtonian fluids of one dimension with vacuum. Z Angew Math Phys, 2009, 60(5):868-898 [20] Yuan H J, Yang Z. A class of compressible non-Newtonian fluids with external force and vacuum under no compatibility conditions. Boundary Value Problems, 2016, 2016(1):201-216 [21] Xin Z P. On nonlinear stability of contact discontinuities//Hyperbolic Problems:Theory, Numerics, Applications. River Edge, NJ:World Sci Publishing, 1996:249-256 |
[1] | Tarik CHAKKOUR. INVERSE PROBLEM STABILITY OF A CONTINUOUS-IN-TIME FINANCIAL MODEL [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1423-1439. |
[2] | Temur JANGVELADZE, Zurab KIGURADZE, Mikheil GAGOSHIDZE. ECONOMICAL DIFFERENCE SCHEME FOR ONE MULTI-DIMENSIONAL NONLINEAR SYSTEM [J]. Acta mathematica scientia,Series B, 2019, 39(4): 971-988. |
[3] | Prondanai KASKASEM, Chakkrid KILN-EAM. HYPERSTABILITY OF THE GENERALIZED CAUCHY-JENSEN FUNCTIONAL EQUATION IN ULTRAMETRIC SPACES [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1017-1032. |
[4] | Duanxu DAI, Bentuo ZHENG. STABILITY OF A PAIR OF BANACH SPACES FOR ε-ISOMETRIES [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1163-1172. |
[5] | Yiming JIANG, Suxin WANG, Xingchun WANG. ASYMPTOTICS OF THE SOLUTIONS TO STOCHASTIC WAVE EQUATIONS DRIVEN BY A NON-GAUSSIAN LEVY PROCESS [J]. Acta mathematica scientia,Series B, 2019, 39(3): 731-746. |
[6] | Iz-iddine EL-FASSI, Hamid KHODAEI, Themistocles M. RASSIAS. APPROXIMATE SOLUTION OF A p-th ROOT FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN (2, β)-BANACH SPACES [J]. Acta mathematica scientia,Series B, 2019, 39(2): 369-381. |
[7] | Muaadh ALMAHALEBI, Abdellatif CHAHBI. APPROXIMATE SOLUTION OF P-RADICAL FUNCTIONAL EQUATION IN 2-BANACH SPACES [J]. Acta mathematica scientia,Series B, 2019, 39(2): 551-566. |
[8] | Chungen LIU, Xiaofei ZHANG. STABILITY OF SUBHARMONIC SOLUTIONS OF FIRST-ORDER HAMILTONIAN SYSTEMS WITH ANISOTROPIC GROWTH [J]. Acta mathematica scientia,Series B, 2019, 39(1): 111-118. |
[9] | Lanxi XU, Ziyi LI. GLOBAL EXPONENTIAL NONLINEAR STABILITY FOR DOUBLE DIFFUSIVE CONVECTION IN POROUS MEDIUM [J]. Acta mathematica scientia,Series B, 2019, 39(1): 119-126. |
[10] | Liya LIU, Daqing JIANG, Tasawar HAYAT, Bashir AHMAD. DYNAMICS OF A HEPATITIS B MODEL WITH SATURATED INCIDENCE [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1731-1750. |
[11] | Huanbin XUE, Jiye ZHANG. ROBUST EXPONENTIAL STABILITY OF SWITCHED DELAY INTERCONNECTED SYSTEMS UNDER ARBITRARY SWITCHING [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1921-1938. |
[12] | Haixiang ZHANG, Xuehua YANG, Da XU. ALTERNATING DIRECTION IMPLICIT OSC SCHEME FOR THE TWO-DIMENSIONAL FRACTIONAL EVOLUTION EQUATION WITH A WEAKLY SINGULAR KERNEL [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1689-1711. |
[13] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[14] | Yonghui ZHOU, Yunrui YANG, Kepan LIU. STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 1001-1024. |
[15] | Shaojun TANG, Lan ZHANG. NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 973-1000. |
|