Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (6): 1689-1711.
• Articles • Previous Articles Next Articles
Haixiang ZHANG1,2, Xuehua YANG1,2, Da XU3
Received:
2017-08-31
Revised:
2018-03-06
Online:
2018-12-25
Published:
2018-12-28
Contact:
Xuehua YANG
E-mail:hunanshidayang@163.com
Supported by:
Haixiang ZHANG, Xuehua YANG, Da XU. ALTERNATING DIRECTION IMPLICIT OSC SCHEME FOR THE TWO-DIMENSIONAL FRACTIONAL EVOLUTION EQUATION WITH A WEAKLY SINGULAR KERNEL[J].Acta mathematica scientia,Series B, 2018, 38(6): 1689-1711.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Chen H B, Xu D, Peng Y. An alternating direction implicit fractional trapezoidal rule type difference scheme for the two-dimensional fractional evolution equation. Int J Comput Math, 2015, 92:2178-2197 [2] Li L, Xu D. Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation. J Comput Phys, 2013, 236:157-168 [3] Tang T. A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl Numer Math, 1993, 11:309-319 [4] Shi D Y, Guo C, Wang H H. Nonconforming finite element method for an integro-differential equation of parabolic type with weakly singular kernel. Acta Mathematica Scientia, 2010, 30A(3):764-775 [5] Penardy M. Mathematical analysis of viscoelastic flows. Ann Rev Fluid Mech, 1989, 21:21-36 [6] Yang Z J. Initial-boundary value problem and Cauchy problem for a quasilinear evolution equation. Acta Mathematica Scientia, 1999, 19B(5):487-496 [7] Prüss J. Regularity and integrability of resolvents of linear Volterra equations//Da Prato D, Iannelli M, eds. Volterra Integrodifferential Equations in Banach Spaces and Applications. New York:Longman Scientific and Technical, 1989 [8] Podlubny I. Fractional Differential Equations. San Diego:Academic Press, 1999 [9] Xu D. On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel I:smooth initial data. Appl Math Comput, 1993, 58:1-27 [10] Xu D. On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel Ⅱ:nonsmooth initial data. Appl Math Comput, 1993, 58:29-60 [11] Chen H, Lü S J, Chen W P. Spectral methods for the time fractional diffusion-wave equation in a semiinfinite channel. Comput Math Appl, 2016, 71:1818-1830 [12] Chen H, Lü S J, Chen W P. Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain. J Comput Phys, 2016, 315:84-97 [13] Chen H, Lü S J, Chen W P. Spectral and pseudospectral approximations for the time fractional diffusion equation on an unbounded domain. J Comput Appl Math, 2016, 304:43-56 [14] Liu Y, Zhang M, Li H, Li J C. High-order local discontinuous Galerkin method combined with WSGDapproximation for a fractional subdiffusion equation. Comput Math Appl, 2017, 73:1298-1314 [15] Liu Y, Du Y W, Li H, He S, Gao W. Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction diffusion problem. Comput Math Appl, 2015, 70:573-591 [16] Liu Y, Du Y W, Li H, Li J C, He S. A two-grid mixed finite element method for a nonlinear fourth-order reaction diffusion problem with time-fractional derivative. Comput Math Appl, 2015, 70:2474-2492 [17] Fairweather G. Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J Numer Anal, 1994, 31:444-460 [18] Pani A K, Fairweather G, Fernandes R I. Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term. SIAM J Numer Anal, 2008, 46:344-364 [19] Fairweather G, Meade D. A survey of spline collocation methods for the numerical solution of differential equations//Diaz J C, ed. Mathematics for Large Scale Computing, Lecture Notes in Pure Appl Math 120. New York:Marcel Dekker, 1989:297-340 [20] Fairweather G, Yang X H, Xu D, Zhang H X. An ADI Crank-Nicolson orthogonal spline collocation method for the two-dimensional fractional diffusion-wave equation. J Sci Comput, 2015, 65:1217-1239 [21] Fairweather G, Zhang H X, Yang X H, Xu D. A backward Euler orthogonal spline collocation method for the time-fractional Fokker-Planck equation. Numer Methods Partial Differential Equations, 2015, 31:1534-1550 [22] Wang Z, Vong S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J Comput Phys, 2014, 227:1-15 [23] Fairweather G. Finite Element Galerkin Methods for Differential Equations. Lecture Notes in Pure and Applied Mathematics, 34. New York:Marcel Dekker, 1978 [24] Fernandes R I, Fairweather G. Analysis of alternating direction collocation methods for parabolic and hyperbolic problems in two space variables. Numer Methods Partial Differ Equ, 1993, 9:191-211 [25] Douglas J, Dupont Jr T. Collocation Methods for Parabolic Equations in a Single Space Variable. Lect Notes Math Vol 385. New York:Springer, 1974 [26] Lubich Ch. Convolution quadrature and discretized operational calculus. Numer Math, 1988, 52:187-199 [27] Xu D. The global behavior of time discretization for an abstract Volterra equation in Hilbert space. Calcolo, 1997, 34:71-104 [28] Lopez-Marcos J C. A difference scheme for a nonlinear partial integro-differential equation. SIAM J Numer Anal, 1990, 27:20-31 [29] Sun Z. Numerical Methods for Partial Differential Equations (in Chinese). Beijing:Science Press, 2005 [30] Fairweather G, Gladwell I. Algorithms for almost block diagonal linear systems. SIAM Rev, 2004, 46:49-58 [31] Lubich Ch, Sloan I H, Thomée V. Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math Comp, 1996, 65:1-17 [32] Zhou Z. Numerical analysis of fractional-order differental equations with nonosmooth data. Dissertation & Theses-Gradworks, 2015, 260(11):1324-1331 [33] Bialecki B, Fernandes R I. An alternating-direction implicit orthogonal spline collocation scheme for nonlinear parabolic problems on rectangular polygons. SIAM J Sci Comput, 2006, 58:1054-1077 [34] Zhang Y N, Sun Z, Zhao X. Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J Numer Anal, 2012, 50:1535-1555 |
[1] | Liya LIU, Daqing JIANG, Tasawar HAYAT, Bashir AHMAD. DYNAMICS OF A HEPATITIS B MODEL WITH SATURATED INCIDENCE [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1731-1750. |
[2] | Huanbin XUE, Jiye ZHANG. ROBUST EXPONENTIAL STABILITY OF SWITCHED DELAY INTERCONNECTED SYSTEMS UNDER ARBITRARY SWITCHING [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1921-1938. |
[3] | Gui-Qiang G. CHEN, Matthew RIGBY. STABILITY OF STEADY MULTI-WAVE CONFIGURATIONS FOR THE FULL EULER EQUATIONS OF COMPRESSIBLE FLUID FLOW [J]. Acta Mathematica Scientia, 2018, 38(5): 1485-1514. |
[4] | Zhiqiang GAO. A NOTE ON EXACT CONVERGENCE RATE IN THE LOCAL LIMIT THEOREM FOR A LATTICE BRANCHING RANDOM WALK [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1259-1268. |
[5] | Xiaoli DING, Yaolin JIANG. NONNEGATIVITY OF SOLUTIONS OF NONLINEAR FRACTIONAL DIFFERENTIAL-ALGEBRAIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(3): 756-768. |
[6] | Yonghui ZHOU, Yunrui YANG, Kepan LIU. STABILITY OF TRAVELING WAVES IN A POPULATION DYNAMIC MODEL WITH DELAY AND QUIESCENT STAGE [J]. Acta mathematica scientia,Series B, 2018, 38(3): 1001-1024. |
[7] | Shaojun TANG, Lan ZHANG. NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 973-1000. |
[8] | Janusz BRZDȨK, Krzysztof CIEPLINSKI. ON A FIXED POINT THEOREM IN 2-BANACH SPACES AND SOME OF ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 377-390. |
[9] | A. M. NAGY, N. H. SWEILAM. NUMERICAL SIMULATIONS FOR A VARIABLE ORDER FRACTIONAL CABLE EQUATION [J]. Acta mathematica scientia,Series B, 2018, 38(2): 580-590. |
[10] | Zhou SHENG, Gonglin YUAN, Zengru CUI. A NEW ADAPTIVE TRUST REGION ALGORITHM FOR OPTIMIZATION PROBLEMS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 479-496. |
[11] | Huoyuan DUAN, Junhua MA. CONTINUOUS FINITE ELEMENT METHODS FOR REISSNER-MINDLIN PLATE PROBLEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 450-470. |
[12] | P. BASKAR, S. PADMANABHAN, M. SYED ALI. FINITE-TIME H∞ CONTROL FOR A CLASS OF MARKOVIAN JUMPING NEURAL NETWORKS WITH DISTRIBUTED TIME VARYING DELAYS-LMI APPROACH [J]. Acta mathematica scientia,Series B, 2018, 38(2): 561-579. |
[13] | Yekini SHEHU, Olaniyi. S. IYIOLA. CONVERGENCE OF HYBRID VISCOSITY AND STEEPEST-DESCENT METHODS FOR PSEUDOCONTRACTIVE MAPPINGS AND NONLINEAR HAMMERSTEIN EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(2): 610-626. |
[14] | Rakesh KUMAR, Anuj Kumar SHARMA, Kulbhushan AGNIHOTRI. STABILITY AND BIFURCATION ANALYSIS OF A DELAYED INNOVATION DIFFUSION MODEL [J]. Acta mathematica scientia,Series B, 2018, 38(2): 709-732. |
[15] | Zhaoxing YANG, Guobao ZHANG. GLOBAL STABILITY OF TRAVELING WAVEFRONTS FOR NONLOCAL REACTION-DIFFUSION EQUATIONS WITH TIME DELAY [J]. Acta mathematica scientia,Series B, 2018, 38(1): 289-302. |
|