Acta mathematica scientia,Series B ›› 2017, Vol. 37 ›› Issue (4): 1019-1032.doi: 10.1016/S0252-9602(17)30055-3
• Articles • Previous Articles Next Articles
Inomjon GANIEV1, Farrukh MUKHAMEDOV2
Received:
2016-03-29
Revised:
2016-07-04
Online:
2017-08-25
Published:
2017-08-25
About author:
Inomjon GANIEV,E-mail:inam@iium.edu.my;Farrukh MUKHAMEDOV,E-mail:far75m@yandex.ru,farrukh m@uaeu.ac.ae
Supported by:
Supported by the MOHE Grant FRGS13-071-0312.
Inomjon GANIEV, Farrukh MUKHAMEDOV. CONDITIONAL EXPECTATIONS AND MARTINGALES IN NONCOMMUTATIVE Lp-SPACES ASSOCIATED WITH CENTER-VALUED TRACES[J].Acta mathematica scientia,Series B, 2017, 37(4): 1019-1032.
[1] Cecchini C, Petz D. Norm convergence of generalized martingales in Lp-spaces over von Neumann algebras. Acta Sci Math (Szeged), 1985, 48:55-63 [2] Cuculescu I. Martingales on von Neumann algebras. J Multivariate Anal, 1971, 1:17-27 [3] Chilin V I, Katz A A. On abstract characterization of non-commutative Lp-spaces associated with centervalued trace. Methods Funct Anal Topol, 2005, 11:346-355 [4] Chilin V I, Zakirov B S. Non-commutative Lp-spaces associated with a Maharam trace. J Operator Theory, 2012, 68:67-83 [5] Chilin V I, Zakirov B S. Maharam traces on von Neumann algebras. Methods Funct Anal Topol, 2010, 16(2):101-111 [6] Dang-Ngoc N. Pointwise convergence of martingales in von Neumann algebras. Israel J Math, 1979, 34:273-280 [7] Dixmier J. Les C*-algebres et leurs representations. Paris, Gauthier-Villars Editeur, 1969 [8] Ganiev I G. The martingales convergence in the Banach-Kantorovich's lattices Lp(▽, μ). Uzb Math J, 2000, (1):18-26 [9] Ganiev I G, Chilin V I. Measurable bundles of noncommutative Lp-spaces associated with a center-valued trace. Siberian Adv Math, 2002, 12:19-33 [10] Ganiev I G, Chilin V I. Measurable bundles of C*-algebras. Vladikavkaz Mat Zh, 2003, 5(1):35-38(Russian) [11] Ganiev I G, Mukhamedov F. On the "Zero-Two" law for positive contractions in the Banach-Kantorovich lattice Lp(▽, μ). Comment Math Univ Carolinae, 2006, 47:427-436 [12] Ganiev I, Mukhamedov F. On weighted ergodic theorems for Banach-Kantorovich lattice Lp(▽, μ). Lobachevskii J Math, 34(2013), 1-10 [13] Ganiev I, Mukhamedov F. Measurable bundles of C*-dynamical systems and its applications. Positivity, 2014, 18:687-702 [14] Ganiev I, Mukhamedov F. Weighted ergodic theorem for contractions of Orlicz-Kantorovich lattice LM(▽b, μb). Bull Malays Math Sci Soc, 2015, 38:387-397 [15] Ganiev I, Mukhamedov F, Bekbaev D. The strong "zero-two" law for positive contractions of BanachKantorovich Lp-lattices. Turk J Math, 2015, 39:583-594 [16] Goldstein S. Norm convergence of martingales in Lp-spaces over von Neumann algebras. Rev Roumanie Math Pures Appl, 1987, 32:531-541 [17] Gutman A E. Banach bundles in the theory of lattice-normed spaces. I. Continuous Banach bundles. Siberian Adv Math, 1993, 3:1-55 [18] Gutman A E. Banach bundles in the theory of lattice-normed spaces, Ⅲ. Siberien Adv Math, 1993, 3:8-40 [19] Gutman A E. Banach fiberings in the theory of lattice-normed spaces. Order-compatible linear operators. Trudy Inst Mat, 1995, 29:63-211(Russian) [20] Hiai F, Tsukada M. Generalized conditional expectations and martingales in noncommutative Lp-spaces. J Operator Theory, 1987, 18:265-288 [21] Junge M. Doob's inequality for non-commutative martingales. J Reine Angew Math, 2002, 549:149-190 [22] Karimov A, Mukhamedov F. On martingal convergence theorems in JW-algebras. Bull Malays Math Sci Soc, 2010, 33:405-410 [23] Kikuchi M. Convergence of weighted averages of martingales in Banach function spaces. J Math Anal Appl, 2000, 244:39-56 [24] Kusraev A G. Vector Duality and Its Applications. Nauka:Novosibirsk, 1985(in Russian) [25] Kusraev A G. Linear operators in lattice-normed spaces//Studies on Geometry in the Large and Mathematical Analysis, Vol 9. Nauka:Novosibirsk, 1987(in Russian) [26] Kusraev A G. Dominated Operators. Dordrecht:Kluwer Academic Publishers, 2000 [27] Lance E C. Martingale convergence in Neumann algebras. Math Proc Cambridge Philos Soc, 1978, 84:47-56 [28] Meyer P A. Quantum probability for Probabilists. Lecture Notes in Mathematics 1538. Berlin:Springer, 1993 [29] Muratov M A, Chilin V I. Algebras of measurable and locally measurable operators. Kyiv, Pratsi In-ty Matematiki NAN Ukraini, 2007(Russian) [30] Nelson E. Note on non-commutative integration. J Funct Anal, 1974, 15:103-117 [31] Segal I E. A non-commutative extansion of abstract integration. Ann Math, 1953, 57:401-457 [32] Takesaki M. Conditional expectations in von Neumann algebras. J Funct Anal, 1972, 9:306-321 [33] Tsukada M. Strong convergence of martingales in von Neumann algebras. Proc Amer Math Soc, 1983, 88:537-540 [34] Umegaki H. Conditional expectation in an operator algebra. Tohoku Math J, 1954, 6:177-181 [35] Umegaki H. Conditional expectation in an operator algebra Ⅱ. Tohoku Math J, 1956, 8:86-100 [36] Xu Q. Operator spaces and noncommutative Lp-spaces. The part on noncommutative Lp-spaces. Lectures in the Summer School on Banach spaces and Operator spaces Nankai University China July 16-July 20, 2007 [37] Yeadon F J. Non-commutative Lp-spaces. Math Proc Camb Phil Soc, 1975, 77:91-102 [38] Zhang Ch, Hou Y. Convergence of weighed averages of martingales in noncommutative Banach function spaces. Acta Math Sci, 2012, 32B:735-744 [39] Zhang Ch, Hou Y. Convergence of weighted averages of noncommutative martingales. Sci China Math, 2013, 56:823-830 |
[1] | Peide LIU, Maofa WANG. BURKHOLDER-GUNDY-DAVIS INEQUALITY IN MARTINGALE HARDY SPACES WITH VARIABLE EXPONENT [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1151-1162. |
[2] | Zhiming WANG. EULER SCHEME AND MEASURABLE FLOWS FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS [J]. Acta mathematica scientia,Series B, 2018, 38(1): 157-168. |
[3] | Kwok-Pun HO. DOOB'S INEQUALITY, BURKHOLDER-GUNDY INEQUALITY AND MARTINGALE TRANSFORMS ON MARTINGALE MORREY SPACES [J]. Acta mathematica scientia,Series B, 2018, 38(1): 93-109. |
[4] | Chuanzhou ZHANG, Yu PAN, Xueying ZHANG. INTERPOLATION OF LORENTZ-ORLICZ MARTINGALE SPACES [J]. Acta mathematica scientia,Series B, 2015, 35(6): 1467-1474. |
[5] | Jian HU, Congbian MA, Youliang HOU. Lp-CONTINUITY OF NONCOMMUTATIVE CONDITIONAL EXPECTATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(5): 995-1002. |
[6] | George TEPHNADZE. APPROXIMATION BY WALSH-KACZMARZ-FEJÉR MEANS ON THE HARDY SPACE [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1593-1602. |
[7] | YANG Wei-Guo, TAO Lin-Lian, CHENG Xiao-Jun. ON THE ALMOST EVERYWHERE CONVERGENCE FOR ARBITRARY STOCHASTIC SEQUENCE [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1634-1642. |
[8] | WANG Ying-Zhan, ZHANG Chao, HOU You-Liang. DOUBLE Φ-INEQUALITIES FOR BANACH-SPACE-VALUED MARTINGALES [J]. Acta mathematica scientia,Series B, 2012, 32(4): 1627-1636. |
[9] | REN Yan-Bo, GUO Tie-Xin. WEAK ATOMIC DECOMPOSITIONS OF MARTINGALE HARDY-LORENTZ SPACES AND APPLICATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(3): 1157-1166. |
[10] | ZHANG Chao, HOU You-Liang. CONVERGENCE OF WEIGHTED AVERAGES OF MARTINGALES IN NONCOMMUTATIVE BANACH FUNCTION SPACES [J]. Acta mathematica scientia,Series B, 2012, 32(2): 735-744. |
[11] | CHEN Wei, LIU Pei-De. SEVERAL WEAK-TYPE WEIGHTED INEQUALITIES IN ORLICZ MARTINGALE CLASSES [J]. Acta mathematica scientia,Series B, 2011, 31(3): 1041-1050. |
[12] | CHEN Li-Hong, LIU Pei-De. BOUNDEDNESS OF DYADIC DERIVATIVE AND CESÀRO MEAN OPERATOR ON SOME B-VALUED MARTINGALE SPACES [J]. Acta mathematica scientia,Series B, 2011, 31(1): 268-280. |
[13] | GAN Shi-xin. ON ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF RANDOM ELEMENT SEQUENCES [J]. Acta mathematica scientia,Series B, 2010, 30(4): 1021-1028. |
[14] | FAN Li-Ping, JIAO Yong, LIU Pei-De. LORENTZ MARTINGALE SPACES AND INTERPOLATION [J]. Acta mathematica scientia,Series B, 2010, 30(4): 1143-1153. |
[15] | LUO Guang-Zhou, MA Xuan, LIU Pei-De. CONVERGENCE THEOREMS AND MAXIMAL INEQUALITIES FOR MARTINGALE ERGODIC PROCESSES [J]. Acta mathematica scientia,Series B, 2010, 30(4): 1269-1279. |
|