[1] Hadouaj H, Malomed B A, Maugin G A. Dynamics of a soliton in a generalized Zakharov system with dissipation. Phys Rev A, 1991, 44(6):3925-3931 [2] Malomed B, Anderson D, Lisak M, Quiroga-Teixeiro M L. Dynamics of solitary waves in the Zakharov model equations. Physical Rev E, 1997, 55(1):962-968 [3] Zhang J. Variational approach to solitary wave solution of the generalized Zakharov equation. Comput Math Appl, 2007, 54(7/8):1043-1046 [4] Javidi M, Golbabai A. Construction of a solitary wave solution for the generalized Zakharov equation by a variational iteration method. Comput Math Appl, 2007, 54(7/8):1003-1009 [5] Khan Y, Faraz N, Yildirim A. New soliton solutions of the generalized Zakharov equations using He's variational approach. Appl Math Lett, 2011, 24(6):965-968 [6] Betchewe G, Thomas B, Victor K K, Crepin K T. Dynamical survey of a generalized-Zakharov equation and its exact travelling wave solutions. Appl Math Comput, 2010, 217(1):203-211 [7] Wang M L, Li X Z. Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations. Phys Lett A, 2005, 343(1/3):48-54 [8] El-Wakil S A, Degheidy A R, Abulwafa E M, Madkour M A, Attia M T, Abdou M A. Exact travelling wave solutions of generalized Zakharov equations with arbitrary power nonlinearities. Int J Nonlinear Sci, 2009, 7(4):455-461 [9] Suarez P, Biswas A. Exact 1-soliton solution of the Zakharov equation in plasmas with power law nonlinearity. Appl Math Comput, 2011, 217(17):7372-7375 [10] Zedan H A. G'/G-expansion method for the generalized Zakharov equations. Ric Mat, 2011, 60(2):203-217 [11] Song M, Liu Z R. Traveling wave solutions for the generalized Zakharov equations. Math Probl Eng, 2012, Art ID 747295 [12] Fang S M, Guo C H, Guo B L. Exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction. Acta Math Sci, 2012, 32B(3):1073-1082 [13] You S J, Guo B L, Ning X Q. Initial boundary value problem for modified Zakharov equations. Acta Math Sci, 2012, 32B(4):1455-1466 [14] You S J. The posedness of the periodic initial value problem for generalized Zakharov equations. Nonlinear Anal, 2009, 71(7/8):3571-3584 [15] Yang H. Orbital stability of solitary waves for the generalized Zakharov system. J Partial Diff Eqs, 2007, 20:252-264 [16] Yang H. Orbital stability of solitary waves for the generalized Zakharov system. Adv Math (China), 2006, 35(5):635-637 [17] Ohta M. Stability of solitary waves for the Zakharov equations Dynamical Systems and Applications. World Scientific Series in Applied Analysis Vol 4. River Edge, NJ:World Scientific, 1995:563-571 [18] Wu Y P. Orbital stability of solitary waves of Zakharov system. J Math Phys, 1994, 35:2413-2422 [19] Angulo J, Banquet C. Orbital stability for the periodic Zakharov system. Nonlinearity, 2011, 24:2913-2932 [20] Benjamin T. The stability of solitary waves. Proc R Soc Lond A, 1972, 338:153-183 [21] Bona J. On the stability theory of solitary waves. Proc R Soc Lond Ser A, 1975, 344:363-374 [22] Weinstein M. Modulation stability of ground states of nonlinear Schrödinger equation. SIAM J Math Anal, 1985, 16:472-490 [23] Weinstein M. Lyapunov stability of ground states of nonlinear dispersive equations. Commun Pure Appl Math, 1986, 39:51-68 [24] Iorio R Jr, Iorio V. Fourier analysis and partial differential equations. Cambridge Studies in Advanced Mathematics, 2001, vol 70, Cambridge:Cambridge University Press [25] Byrd P, Friedman M. Handbook of Elliptic Integrals for Engineers and Scientists. 2nd ed. New York:Springer, 1971 [26] Wang Z X, Guo D R. Special Functions. Singapore:World Scientific Publishing, 1989 [27] Ince E L. The periodic Lamé functions. Proc Roy Soc Edinburgh, 1940, 60:47-63 [28] Magnus W, Winkler S. Hill's Equation. Tracts Pure Appl Math, vol 20, New York:Wiley, 1976 [29] Weinstein M. Modulation stability of ground states of nonlinear Schrödinger equation. SIAM J Math Anal, 1985, 16:472-490 [30] Angulo J. Nonlinear Dispersive Evolution Equations:Existence and Stability of Solitary and Periodic Traveling Waves Solutions (Mathematical Surveys and Monographs Series (SURV vol 156)). Providence, RI:American Mathematical Society, 2009 |