Acta mathematica scientia,Series B ›› 2015, Vol. 35 ›› Issue (5): 970-980.doi: 10.1016/S0252-9602(15)30031-X

• Articles • Previous Articles     Next Articles

ON SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR THE POISSON EQUATION WITH A NONLOCAL BOUNDARY OPERATOR

B. J. KADIRKULOV1, M. KIRANE2,3   

  1. 1. Tashkent State Institute for Oriental Studies, Tashkent, Uzbekistan;
    2. Laboratoire de Mathématiques, Image et Applications, Université de La Rochelle, Avenue M. Crépeau, 17042 La Rochelle Cedex, France;
    3. NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
  • Received:2014-10-10 Revised:2015-03-08 Online:2015-09-01 Published:2015-09-01

Abstract:

In this work, we investigate the solvability of the boundary value problem for the Poisson equation, involving a generalized Riemann-Liouville and the Caputo derivative of fractional order in the class of smooth functions. The considered problems are generalization of the known Dirichlet and Neumann problems with operators of a fractional order.

Key words: operator of fractional integration and differentiation, solvability, boundary value problem, Riemann-Liouville operator, Caputo fractional derivative, Poisson equation, Dirichlet and Neumann problems

CLC Number: 

  • 35J05
Trendmd