[1] Chen F. Introduction to Plasma Physics and Controlled Fusion, Vol 1. New York:Plenum Press, 1984
[2] Chen G Q, Jerome J W, Wang D H. Compressible Euler-Maxwell equations. Transport Theory and Statistical Physics, 2000, 29:311-331
[3] Degond P, Deluzet F, Savelief D. Numerical approximation of the Euler-Maxwell model in the quasineutral limit. J Comput Phys, 2012231:1917-1946
[4] Duan R J. Global smooth flows for the compressible Euler-Maxwell system:relaxation case. J Hyperbolic Differential Equations, 20118:375-413
[5] Duan R J. Green's function and large time behavior of the Navier-Stokes-Maxwell system. Anal Appl, 2012, 10:133-197
[6] Duan R J, Liu Q Q, Zhu C J. The Cauchy problem on the compressible two-fluids Euler-Maxwell equations. SIAM J Math Anal, 2012, 44:102-133
[7] Feng Y H, Peng Y J, Wang S. Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations. Nonlinear Anal Real, 2014, 19:105-116
[8] Feng Y H, Wang S, Kawashima S. Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system. Math Mod Meth Appl Sci, 2014, 24:2851-2884
[9] Germain P, Masmoudi N. Global existence for the Euler-Maxwell system. Ann Sci Ecole Norm S, 2014, 47(3):469-503
[10] Jüngel A. Quasi-Hydrodynamic Semiconductor Equations. Birkhäuser, 2001
[11] Kato T. The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch Ration Mech Anal, 1975, 58:181-205
[12] Klainerman S, Majda A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 198134:481-524
[13] Majda A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York:Springer-Verlag, 1984
[14] Matsumura A, Nishida T. The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc Japan Acad, Ser A, 1979, 55:337-342
[15] Matsumura A, Nishida T. The initial value problem for the equation of motion of viscous and heatconductive gases. J Math Kyoto Univ, 1980, 20:67-104
[16] Markowich P, Ringhofer C A, Schmeiser C. Semiconductor Equations. Springer, 1990
[17] Nishida T. Nonlinear hyperbolic equations and related topics in fluids dynamics. Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay, 1978:78-02
[18] Peng Y J. Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations. Ann I H Poincare-AN, 2012, 29:737-759
[19] Peng Y J,Wang S. Convergence of compressible Euler-Maxwell equations to incompressible Euler equations. Comm Part Diff Equations, 2008, 33:349-376
[20] Peng Y J, Wang S. Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations. SIAM J Math Anal, 2008, 40:540-565
[21] Peng Y J, Wang S. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete Contin Dyn Syst, 2009, 23:415-433
[22] Peng Y J, Wang S, Gu Q L. Relaxation limit and global existence of smooth solution of compressible Euler-Maxwell equations. SIAM J Math Anal, 2011, 43:944-970
[23] Rishbeth H, Garriott O K. Introduction to Ionospheric Physics. Academic Press, 1969
[24] Stein E M, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. Princeton:Princeton University Press, 1970
[25] Ueda Y, Kawashima S. Decay property of regularity-loss type for the Euler-Maxwell system. Methods Appl Anal, 2011, 18:215-268
[26] Ueda Y, Wang S, Kawashima S. Dissipative structure of the regularity type and time asymptotic decay of solutions for the Euler-Maxwell system. SIAM J Math Anal, 2012, 44:2002-2017
[27] Wang S, Feng Y H, Li X. The asymptotic behavior of globally smooth solutions of bipolar non-isentropic compressible Euler-Maxwell system for plasm. SIAM J Math Anal, 2012, 44:3429-3457
[28] Wang S, Feng Y H, Li X. The asymptotic behavior of globally smooth solutions of non-isentropic Euler-Maxwell equations for plasmas. Appl Math Comput, 2014, 231:299-306
[29] Xu J. Global classical solutions to the compressible Euler-Maxwell equations. SIAM J Math Anal, 2011, 43:2688-2718
[30] Yang J W, Wang S. The diffusive relaxation limit of non-isentropic Euler-Maxwell equations for plasmas. J Math Anal Appl, 2011, 380:343-353 |