[1] Fokas A S. A unified transform method for solving linear and certain nonlinear PDEs. Proc Roy Soc Lond A, 1997, 453:1411-1443 [2] Fokas A S. On the integrability of linear and nonlinear patial differential equations. J Math Phys, 2000, 41:4188-4237 [3] Fokas A S. A unified approach to boundary value problem. CBMS-NSF reginal conference series in aoolied mathematics, SIAM, 2008 [4] Fokas A S. Integrable nonlinear evolution equations on the half-line. Comm Math Phys, 2002, 230:1-39 [5] Lenells J, Fokas A S. An integrable generalization of the nonlinear Schrödinger equation on the half-line and solitions. Inverse Problems, 2009, 25 [6] Boutet de Monvel A, Fokas A S, Shepelsky D. The analysis of the global relation for the nonlinear Schrödinger equation on the half-line. Lett Math Phys, 2003, 65:199-212 [7] Boutet de Monvel A, Fokas A S, Shepelsky D. Integrable nonlinear evolution equations on a finite interval. Commun Math Phys, 2006, 263:133-172 [8] Lenells J, Fokas A S. The unified method:Ⅲ. Nonlinearizable problems on the interval. J Phys A:Math Theor, 2012, 45:21pp [9] Fokas A S, Its A R, Sung L Y. The nonlinear Schrödinger equation on the half-line. Nonlinearity, 2005, 18:1771-1822 [10] Fokas A S, Its A R. The Nonlinear Schrödinger equation on the interval. J Phys, 2004, 37A:6091-6114 [11] Fokas A S. On a class of physically important integrable equations. Phys D, 1995, 87:145-150 [12] Lenells J, Fokas A S. On a novel integrable generalization of the nonlinear Schrödinger equation. Nonlinearity, 2009, 22:11-27 [13] Lenells J. Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud Appl Math, 2009, 123:215-232 [14] Lenells J. The derivative nonlinear Schrödinger equation on the half-line. Phys D, 2008, 237:3008-3019 [15] Adler V E, Gürel B, Gürses M, Habibullin I. Boundary conditions for integrable equations. J Phys A, 1997, 30:3505-3513 [16] Zakharov V E, Shabat A. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I and Ⅱ. Funct Anal Appl, 1974, 8:226-235; 1979, 13:166-174 |