[1] Adjerid A, Flaherty J E, Krivodonova L. A posteriori discontinuous Galerkin error estimation for hyperbolic problems. Comput Methods Appl Mech Engrg, 2002, 191: 1097--1112
[2] Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis. New York: John Wiley & Sons, 2000
[3] Alouges F, De Vuyst F, Le Coq G, Lorin E. The reservoir technique: a way to make godunov schemes zero or very low diffusive. application to collela-glaz solver. Euro J Mech B, 2008, 27(6): 643--664
[4] Becker R, Rannacher R. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J Num Math, 1996, 4: 237--264
[5] Bressan A. Global solutions of systems of conservation laws by wave-front tracking. J Math Anal Appl, 1992, 170: 414--432
[6] Bressan A. Hyperbolic Systems of Conservation Laws: The one-dimensonal Cauchy Problem. Volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford: Oxford University Press, 2001
[7] Bressan A, Marson A. Error bounds for a deterministic version of the Glimm scheme. Arch Rat Mech Anal, 1998, 142(2): 155--176
[8] Chorin A J. Random choice solution of hyperbolic systems. J Comput Phys, 1976, 22(4): 517--533
[9] Cockburn B, Gau H. A posteriori error estimates of general numerical methods for scalar conservation laws.
Mat Aplic Comp, 1995, 14(1): 37--47
[10] Colella P. Glimm's method for gas dynamics. SIAM J Sci Statist Comput, 1982, 3(1): 76--110
[11] Crasta G, Bressan A, Piccoli B. Well posedness of the Cauchy problem for $n \times n$ systems of conservation laws. Memoirs Amer Math Soc, 2000, 146
[12] Dafermos C. Hyperbolic Conservation Laws in Continuum Pysics. Volume 325 of Grundlehren der mathematischen Wissenschaften. New York: Springer-Verlag, 2000
[13] Dafermos C M. Polygonal approximation of solution to the initial value problem for a conservation law.
J Math Anal Appl, 1972, 38: 33--41
[14] DiPerna R J. Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J Diff Eq, 1976, 20(1): 187--212
[15] Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations. Comm Pure Appl Math, 1965, 18: 697--715
[16] Gosse L, Makridakis C. Two a posteriori error estimates for one-dimensional scalar conservation laws.
SIAM J Numer Anal, 2000, 38(3): 964--988
[17] Harten A, Lax P D. A random choice finite difference scheme for hyperbolic conservation laws. SIAM J Numer Anal, 1981, 18(2): 289--315
[18] Hoff D, Smoller J. Error bounds for Glimm difference approximations for scalar conservation laws. Trans Amer Math Soc, 1985, 289: 611--642
[19] Holden H, Risebro N H. Front Tracking for Hyperbolic Conservation Laws. Volume 152 of Applied Mathematical Sciences. Berlin: Springer-Verlag, 2002
[20] Houston P, Süli E. Adaptive finite element approximation of hyperbolic problems//Barth T J, Deconinck H, ed.
Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Volume 25 of Lecture Notes in Computational Sciences and Engineering. Berlin: Springer Verlag, 2003: 269--344
[21] Hu J, LeFloch P G. L1 continuous dependence property for systems of conservation laws. Arch Ration Mech Anal, 2001, 151(1): 45--93
[22] Jiang G, Shu C W. Eficient implementation of weighted ENO schemes. J Comput Phy, 1996, 126: 202--228
[23] Johnson C, Szepessy A. Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm Pure Appl Math, 1995, 48: 199--234
[24] Kröner D, Ohlberger M. A posteriori error estimates for upwind finite volume schemes for conservation laws in multi dimensions. Math Comput, 1999, 69(229): 25--39
[25] Laforest M. A posteriori error estimate for front-tracking: systems of conservation laws. SIAM J Math Anal, 2004, 35(5): 1347--1370
[26] Laforest M. Mechanisms for error propagation and cancellation in Glimm's scheme without rarefactions. J Hyp Diff Eq, 2007, 4(3): 501--531
[27] Laforest M. An a posteriori error estimate for Glimm's scheme//Proceedings of the 11th {I}nternational Conference on Hyperbolic {P}roblems: Theory, Numerics and Applications. 2008: 643--651
[28] Laforest M. Error estimators for nonlinear conservation laws and entropy production. 2009. In prepapration.
[29] Lax P. Hyperbolic systems of conservation laws II. Comm Pure Appl Math, 1957, 10: 537--566
[30] LeFloch P G. Propagating phase boundaries: formulation of the problem and existence via the Glimm method. Arch Rational Mech Anal, 1993, 123(2): 153--197
[31] Liska R, Wendroff B. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J Sci Comput, 2003, 25(3): 995--1017
[32] Liu T -P. Decay to {N}-wave solutions of general systems of nonlinear hyperbolic conservation laws. Comm Pure Appl Math, 1977, 30: 585--610
[33] Liu T -P. The deterministic version of the Glimm scheme. Comm Math Phys, 1977, 57: 135--148
[34] Liu T -P, Yang T. L1 stability for $2 \times 2$ systems of hyperbolic conservation laws. J Amer Math Soc, 1999, 12(3): 729--774
[35] Lucier B J. Error bounds for the methods of Glimm, Godunov and LeVeque. SIAM J Numer Anal, 1985, 22(6): 1074--1081
[36] Risebro N H. A front-tracking alternative to the random choice method. Proc Amer Math Soc, 1993, 117(4): 1125--1139
[37] Smoller J.Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1983
[38] Tadmor E. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations. SIAM J Numer Anal, 1991, 28: 891--906
[39] Yoon D, Kim H J, Hwang W. Adaptive mesh refinement for weighted essentially non-oscillatory schemes.
Bull Korean Math Soc, 2008, 45(4): 781--795
|