[1] Amrein W O, Berthier A M, Georgescu V.$L^{p}$ inequalities for the Lalacian and unique continuation. Ann Inst Fourier (Grenoble), 1981, 31: 153-168 [2] Agmon S.Spectral properties of Schrödinger operators and scattering theory. Ann Sc Norm Sup Pisa Cl Sci, 1975, 2: 151-218 [3] D'Ancona P, Fanelli L. Strichartz and smoothing estimates for dispersive equation with magnetic potentials. Comm Part Diff Equs, 2008, 33: 1082-1112 [4] D'Ancona P, Fanelli L, Vega L, Visciglia N. Endpoint Strichartz estimates for the magnetic Schrödinger equation. J Funct Anal, 2010, 258: 3227-3240 [5] Demuth M, Ouhabaz E M.Scattering for Schrödinger operators with magnetic fields. Math Nachr, 1997, 185: 49-58 [6] Erdoğan M B, Goldberg M, Schlag W.Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in $\mathbb{R}^{3}$. J Eur Math Soc, 2008, 10: 507-531 [7] Feng H L, Wang H, Yao X H.Scattering theory for the defocusing fourth order NLS with potentials. Acta Mathematica Sinica, 2018, 34(4): 773-786 [8] Giere E. Asymptotic completeness for functions of the Laplacian perturbed by potentials and obstacles. Math Nachr, 2004, 263-264: 133-153 [9] Georgiev V, Stefanov A, Tarulli M.Smoothing-Strichartz estimates for the Schrödinger equation with small magnetic potential. Discrete Contin Dyn Syst, 2007, 17: 771-786 [10] Hörmander L.The Analysis of Linear Partial Differential Operators Ⅰ-Ⅳ. Berlin: Springer-Verlag, 1983-1985 [11] Iwatsuka A.Spectral representation for Schrödinger operator with magnetic vector potential. J Math Kyoto Univ, 1982, 22: 223-242 [12] Kitada H.Scattering theory for the fractional power of negative Laplacian. J Abstr Differ Equ Appl, 2010, 1: 1-26 [13] Kato T.Perturbation Theory for Linear Operators. Heidelberg: Springer-Verlag, 1980 [14] Komech A I, Kopylova E A.Dispersive decay for the magnetic Schrödinger equation. J Funct Anal, 2013, 264: 735-751 [15] Koch H, Tataru D.Carleman estimates and absence of embedded eigenvalues. Commun Math Phys, 2006, 267: 419-449 [16] Reed M, Simon B.Methods of Modern Mathematical Physics. Ⅲ: Scattering Theory. New York: Academic Press, 1979 [17] Schlag W.Intertwing wave operators, Fourier restriction, and Wiener theorems. Conference Proceedings Kato Centenntial Meeting, Tokyo, 2018 [18] Zhang R, Huang T, Zheng Q.The scattering of fractional Schrödinger operators with short range potentials. J Funct Anal, 2021, 281: 109033 |