Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (6): 2139-2164.doi: 10.1007/s10473-024-0606-0
Previous Articles Next Articles
Zhang LIU1,†, Ping CHEN2
Received:
2023-09-07
Revised:
2024-03-12
Published:
2024-12-06
Contact:
† Zhang LIU, E-mail: liuzhang1006@163.com
About author:
Ping CHEN, E-mail: pche@unimelb.edu.au
Supported by:
CLC Number:
Zhang LIU, Ping CHEN. ON DIVIDENDS AND GERBER-SHIU ANALYSIS WITH CONSTANT INTEREST AND A PERIODIC-THRESHOLD MIXED STRATEGY[J].Acta mathematica scientia,Series B, 2024, 44(6): 2139-2164.
[1] Albrecher H, Cheung E C K, Thonhauser S. Randomized observation periods for the compound Poisson risk model: Dividends. ASTIN Bulletin: The Journal of the IAA, 2011, 41(2): 645-672 [2] Albrecher H, Ivanovs J.Strikingly simple identities relating exit problems for Lévy processes under continuous and Poisson observations. Stochastic Processes and Their Applications, 2017, 127(2): 643-656 [3] Albrecher H, Thonhauser S.Optimal dividend strategies for a risk process under force of interest. Insurance: Mathematics and Economics, 2008, 43(1): 134-149 [4] Asmussen S, Taksar M.Controlled diffusion models for optimal dividend pay-out. Insurance: Mathematics and Economics, 1997, 20(1): 1-15 [5] Avanzi B.Strategies for dividend distribution: A review. North American Actuarial Journal, 2009, 13(2): 217-251 [6] Avanzi B, Lau H, Wong B.On the optimality of joint periodic and extraordinary dividend strategies. European Journal of Operational Research, 2021, 295(3): 1189-1210 [7] Avanzi B, Lau H, Wong B.Optimal periodic dividend strategies for spectrally negative Lévy processes with fixed transaction costs. Scandinavian Actuarial Journal, 2021, 2021(8): 645-670 [8] Avanzi B, Tu V, Wong B.On optimal periodic dividend strategies in the dual model with diffusion. Insurance: Mathematics and Economics, 2014, 55: 210-224 [9] B${\rm{\ddot u}}$hlmann H. Mathematical Methods in Risk Theory. New York: Springer-Verlag, 1970 [10] Cai J, Dickson D C M. On the expected discounted penalty function at ruin of a surplus process with interest. Insurance: Mathematics and Economics, 2002, 30(3): 389-404 [11] Cheung E C K, Liu H, Woo J K. On the joint analysis of the total discounted payments to policyholders and shareholders: dividend barrier strategy. Risks, 2015, 3(4): 491-514 [12] Cheung E C K, Zhang Z. Periodic threshold-type dividend strategy in the compound Poisson risk model. Scandinavian Actuarial Journal, 2019, 2019(1): 1-31 [13] Cheung E C K, Zhang Z. Simple approximation for the ruin probability in renewal risk model under interest force via Laguerre series expansion. Scandinavian Actuarial Journal, 2021, 2021(9): 804-831 [14] De Finetti B.Su un'impostazione alternativa della teoria collettiva del rischio. Transactions of the 15-th International Congress of Actuaries, 1957, 2(1): 433-443 [15] Dickson D C M, Hipp C. On the time to ruin for Erlang (2) risk processes. Insurance: Mathematics and Economics, 2001, 29(3): 333-344 [16] Filipović D, Willems S.A term structure model for dividends and interest rates. Mathematical Finance, 2020, 30(4): 1461-1496 [17] Gao S, Liu Z.The perturbed compound Poisson risk model with constant interest and a threshold dividend strategy. Journal of Computational and Applied Mathematics, 2010, 233(9): 2181-2188 [18] Gerber H U.Entscheidungskriterien für den zusammengesetzten Poisson-Prozess, Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker, 1969, 69: 185-227 [19] Gerber H U, Shiu E S W. On the time value of ruin. North American Actuarial Journal, 1998, 2(1): 48-72 [20] Gerber H U, Shiu E S W. The time value of ruin in a Sparre Andersen model. North American Actuarial Journal, 2005, 9(2): 49-69 [21] Gerber H U, Shiu E S W. On optimal dividend strategies in the compound Poisson model. North American Actuarial Journal, 2006, 10(2): 76-93 [22] Jeanblanc-Picqué M, Shiryaev A N.Optimization of the flow of dividends. Uspekhi Matematicheskikh Nauk, 1995, 50(2): 25-46 [23] Li S, Garrido J.On ruin for the Erlang ($n$) risk process. Insurance: Mathematics and Economics, 2004, 34(3): 391-408 [24] Li J, Liu G, Zhao J.Optimal dividend-penalty strategies for insurance risk models with surplus-dependent premiums. Acta Mathematica Scientia, 2020, 40B(1): 170-198 [25] Lin X S, Pavlova K P.The compound Poisson risk model with a threshold dividend strategy. Insurance: Mathematics and Economics, 2006, 38(1): 57-80 [26] Lin X S, Willmot G E.Analysis of a defective renewal equation arising in ruin theory. Insurance: Mathematics and Economics, 1999, 25(1): 63-84 [27] Lin X S, Willmot G E, Drekic S.The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function. Insurance: Mathematics and Economics, 2003, 33(3): 551-566 [28] Liu Z, Chen P, Hu Y. On the dual risk model with diffusion under a mixed dividend strategy. Applied Mathematics and Computation, 2020, 376: Art 125115 [29] Mikhlin S G. Integral Equations.London: Pergamon Press, 1957 [30] Noba K, Pérez J L, Yamazaki K, Yano K.On optimal periodic dividend strategies for Lévy risk processes. Insurance: Mathematics and Economics, 2018, 80: 29-44 [31] Palmowski Z, Pérez J L, Surya B A, Yamazaki K.The Leland-Toft optimal capital structure model under Poisson observations. Finance and Stochastics, 2020, 24: 1035-1082 [32] Peng X, Su W, Zhang Z.On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy. Journal of Industrial & Management Optimization, 2019, 2019: 251-276 [33] Song Z J, Sun F Y.The dual risk model under a mixed ratcheting and periodic dividend strategy. Communications in Statistics-Theory and Methods, 2023, 52(10): 3526-3540 [34] Sundt B, Teugels J L.Ruin estimates under interest force. Insurance: Mathematics and Economics, 1995, 16(1): 7-22 [35] Wan N.Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion. Insurance: Mathematics and Economics, 2007, 40(3): 509-523 [36] Wang W.The perturbed Sparre Andersen model with interest and a threshold dividend strategy. Methodology and Computing in Applied Probability, 2015, 17: 251-283 [37] Wang W, Zhou X.General drawdown-based de Finetti optimization for spectrally negative Lévy risk processes. Journal of Applied Probability, 2018, 55(2): 513-542 [38] Wang W, Ming R, Hu Y.On De Finetti's optimal impulse dividend control problem under Chapter 11 bankruptcy. Acta Mathematica Scientia, 2024, 44B(1): 215-233 [39] Yuen K C, Wang G.Some ruin problems for a risk process with stochastic interest. North American Actuarial Journal, 2005, 9(3): 129-142 [40] Yuen K C, Wang G, Li W K.The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier. Insurance: Mathematics and Economics, 2007, 40(1): 104-112 [41] Zhang Y, Zhao P, Zhou H.The optimal reinsurance-investment problem considering the joint interests of an insurer and a reinsurer under HARA utility. Acta Mathematica Scientia, 2023, 43B(1): 97-124 [42] Zhang Z, Han X.The compound Poisson risk model under a mixed dividend strategy. Applied Mathematics and Computation, 2017, 315: 1-12 [43] Zhang Z, Cheung E C K. The Markov additive risk process under an Erlangized dividend barrier strategy. Methodology and Computing in Applied Probability, 2016, 18: 275-306 [44] Zhang Z, Cheung E C K, Yang H. Lévy insurance risk process with Poissonian taxation. Scandinavian Actuarial Journal, 2017, 2017(1): 51-87 [45] Zhi H, Pu J.On a dual risk model perturbed by diffusion with dividend threshold. Chinese Annals of Mathematics, Series B, 2016, 37(5): 777-792 |
[1] | Jingwei LI, Guoxin LIU, Jinyan ZHAO. OPTIMAL DIVIDEND-PENALTY STRATEGIES FOR INSURANCE RISK MODELS WITH SURPLUS-DEPENDENT PREMIUMS [J]. Acta mathematica scientia,Series B, 2020, 40(1): 170-198. |
[2] | YANG Hu, XUE Kai. RUIN PROBABILITY IN A SEMI-MARKOV RISK MODEL WITH CONSTANT INTEREST FORCE AND HEAVY-TAILED CLAIMS [J]. Acta mathematica scientia,Series B, 2013, 33(4): 998-1006. |
[3] | FANG Ying, WU Rong. ON THE RENEWAL RISK MODEL WITH INTEREST AND DIVIDEND [J]. Acta mathematica scientia,Series B, 2010, 30(5): 1730-1738. |
[4] | LIU Juan, XU Jian-Cheng, HU Yi-Jun. ON THE EXPECTED DISCOUNTED PENALTY FUNCTION IN A MARKOV-DEPENDENT RISK MODEL WITH CONSTANT DIVIDEND BARRIER [J]. Acta mathematica scientia,Series B, 2010, 30(5): 1481-1491. |
[5] | MING Rui-Xing, HE Xiao-Xia, HU Yi-Jun, LIU Juan. UNIFORM ESTIMATE ON FINITE TIME RUIN PROBABILITIES WITH RANDOM INTEREST RATE [J]. Acta mathematica scientia,Series B, 2010, 30(3): 688-700. |
[6] | JIAN Zhi-Hong, LI Chu-Lin. GENERALIZED STOCHASTIC DURATION IN MARKOVIAN HEATH-JARROW-MORTON FRAMEWORK [J]. Acta mathematica scientia,Series B, 2002, 22(1): 99-106. |
[7] | 胡耀忠. MULTI-DIMENSIONAL GEOMETRIC BROWNIAN MOTIONS, ONSAGER-MACHLUP FUNCTIONS, AND APPLICATIONS TO MATHEMATICAL FINANCE [J]. Acta mathematica scientia,Series B, 2000, 20(3): 341-358. |
|