Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (3): 865-886.doi: 10.1007/s10473-024-0306-9
Previous Articles Next Articles
Bin Han1, Ningan Lai2,*, Andrei Tarfulea3
Received:
2022-12-02
Revised:
2023-01-08
Online:
2024-06-25
Published:
2024-05-21
Contact:
*Ningan Lai, E-mail:About author:
Bin Han,E-mail:hanbin@hdu.edu.cn; Andrei Tarfulea, E-mail:tarfulea@lsu.edu
Supported by:
CLC Number:
Bin Han, Ningan Lai, Andrei Tarfulea. THE GLOBAL EXISTENCE OF STRONG SOLUTIONS FOR A NON-ISOTHERMAL IDEAL GAS SYSTEM[J].Acta mathematica scientia,Series B, 2024, 44(3): 865-886.
[1] Bahouri H, Chemin J Y, Danchin R.Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer, 2011 [2] Berry R S, Rice S A, Ross J. Physical Chemistry.Oxford: Oxford University Press, 2000 [3] Bird G A.Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Clarendon Press, 1994 [4] Bony J M. Calcul symbolique et propagation des singularités pouréquations aux dérivées partielles nonlinéaires. Annales Scinentifiques de l'école Normale Supérieure, 1981, 14: 209-246 [5] Dafermos C M.Hyperbolic Conservation Laws in Continuum Physics. Berlin: Springer-Verlag, 2016 [6] Danchin R. Global existence in critical spaces for compressible Navier-Stokes equations. Invent math, 2000, 141: 579-614 [7] De Anna F, Liu C. Non-isothermal general Ericksen-Leslie system: derivation, analysis and thermodynamic consistency. Arch Ration Mech Anal, 2019, 231: 637-717 [8] De Anna F, Liu C, Schlömerkemper A, Sulzbach J E.Temperature dependent extensions of the Cahn-Hilliard equation. arXiv:2112.14665v1 [9] Feireisl E. Asymptotic analysis of the full Navier-Stokes-Fourier system: From compressible to incompressible fluid flows. Russian Mathematical Surveys, 2007, 62: 511-533 [10] Feireisl E, Novotný A. Weak-strong uniqueness property for the full navier-stokes-fourier system. Arch Rational Mech Anal, 2012, 204: 683-706 [11] Feireisl E, Novotný A. On a simple model of reacting compressible flows arising in astrophysics. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2005, 135: 1169-1194 [12] Feireisl E, Novotný A. Weak sequential stability of the set of admissible variational solutions to the Navier-Stokes-Fourier system. SIAM J Math Anal, 2005, 37: 619-650 [13] Feireisl E. Concepts of Solutions in the Thermodynamics of Compressible Fluids//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 1353-1379 [14] Fujita H, Kato T. On the Navier-Stokes initial value problem, I. Arch Ration Mech Anal, 1964, 16: 269-315 [15] Giga M H, Kirshtein A, Liu C. Variational Modeling and Complex Fluids//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 73-113 [16] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge: Cambridge University Press, 1996 [17] Hsieh C Y, Lin T C, Liu C, Liu P. Global existence of the non-isothermal Poisson-Nernst-Planck-Fourier system. J Differential Equations, 2020, 269: 7287-7310 [18] Hyon Y, Kwak D Y, Liu C. Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Contin Dyn Syst, 2010, 26: 1291-1304 [19] Kreml O, Pokorny M. On the local strong solutions for a system describing the flow of a viscoelastic fluid. Banach Center Publlications, 2009, 86(1): 195-206 [20] Lai N A, Liu C, Tarfulea A. Positivity of temperature for some non-isothermal fluid models. J Differential Equations, 2022, 339: 555-578 [21] Liu C, Sulzbach J E. The Brinkman-Fourier system with ideal gas equilibrium. Discrete & Continuous Dynamical Systems, 2022, 42: 425-462 [22] Liu C, Sulzbach J E. Well-posedness for the reaction-diffusion equation with temperature in a critical Besov space. J Differential Equations, 2022, 325: 119-149 [23] McQuarrie D A. Statistical Mechanics. New York: Harper & Row, 1976 [24] Novotný A, Petzeltová H. Weak Solutions for the Compressible Navier-Stokes Equations: Existence, Stability,Longtime Behavior//Giga Y, Novotný A. Handbook of Mathematical Analysis in Mechanics of Viscous Fluids. Berlin: Springer, 2018: 1381-1546 [25] Tarfulea A. Improved a priori bounds for thermal fluid equations. Transactions of the Amer Math Soc, 2019, 371: 2719-2737 [26] Zeytounian R K.Asymptotic Modeling of Fluid Flow Phenomena. Dordrecht: Kluwer, 2002 |
[1] | Xinyu Tu, Chunlai Mu, Shuyan Qiu, Jing Zhang. DYNAMICS FOR A CHEMOTAXIS MODEL WITH GENERAL LOGISTIC DAMPING AND SIGNAL DEPENDENT MOTILITY [J]. Acta mathematica scientia,Series B, 2024, 44(3): 1046-1063. |
[2] | Thieu Huy NGUYEN, Truong Xuan PHAM, Thi Ngoc Ha VU, The Sac LE. EXISTENCE AND STABILITY OF PERIODIC AND ALMOST PERIODIC SOLUTIONS TO THE BOUSSINESQ SYSTEM IN UNBOUNDED DOMAINS [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1875-1901. |
[3] | Lu YANG, Yun-Rui YANG, Xue SONG. TRAVELING WAVES IN A SIRH MODEL WITH SPATIO-TEMPORAL DELAY AND NONLOCAL DISPERSAL [J]. Acta mathematica scientia,Series B, 2022, 42(2): 715-736. |
[4] | Ala A. TALAHMEH, Salim A. MESSAOUDI, Mohamed ALAHYANE. THEORETICAL AND NUMERICAL STUDY OF THE BLOW UP IN A NONLINEAR VISCOELASTIC PROBLEM WITH VARIABLE-EXPONENT AND ARBITRARY POSITIVE ENERGY [J]. Acta mathematica scientia,Series B, 2022, 42(1): 141-154. |
[5] | Xueli KE, Baoquan YUAN, Yaomin XIAO. A STABILITY PROBLEM FOR THE 3D MAGNETOHYDRODYNAMIC EQUATIONS NEAR EQUILIBRIUM [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1107-1118. |
[6] | Yabo REN, Boling GUO, Shu WANG. GLOBAL WEAK SOLUTIONS TO THE α-MODEL REGULARIZATION FOR 3D COMPRESSIBLE EULER-POISSON EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 679-702. |
[7] | Gongbao LI, Tao YANG. THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTIONAL LAPLACIAN IN RN WITH A HARDY TERM [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1808-1830. |
[8] | Qingyou SUN, Yunguang LU, Christian KLINGENBERG. GLOBAL WEAK SOLUTIONS FOR A NONLINEAR HYPERBOLIC SYSTEM [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1185-1194. |
[9] | Qingquan TANG, Qiao XIN, Chunlai MU. BOUNDEDNESS OF THE HIGHER-DIMENSIONAL QUASILINEAR CHEMOTAXIS SYSTEM WITH GENERALIZED LOGISTIC SOURCE [J]. Acta mathematica scientia,Series B, 2020, 40(3): 713-722. |
[10] | Guangwu WANG, Boling GUO. A BLOW-UP CRITERION OF STRONG SOLUTIONS TO THE QUANTUM HYDRODYNAMIC MODEL [J]. Acta mathematica scientia,Series B, 2020, 40(3): 795-804. |
[11] | Gongbao LI, Yahui NIU. THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION [J]. Acta mathematica scientia,Series B, 2020, 40(1): 90-112. |
[12] | Weike WANG, Rui XUE. DECAY ESTIMATE AND GLOBAL EXISTENCE OF SEMILINEAR THERMOELASTIC TIMOSHENKO SYSTEM WITH TWO DAMPING EFFECTS [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1461-1486. |
[13] | Xiantao HUANG. ON THE DIMENSIONS OF SPACES OF HARMONIC FUNCTIONS WITH POLYNOMIAL GROWTH [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1219-1234. |
[14] | Hua CHEN, Wenbin LÜ, Shaohua WU. SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1285-1304. |
[15] | Yan LI. NONEXISTENCE OF POSITIVE SOLUTIONS FOR A SEMI-LINEAR EQUATION INVOLVING THE FRACTIONAL LAPLACIAN IN RN [J]. Acta mathematica scientia,Series B, 2016, 36(3): 666-682. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 1
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|