Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (1): 141-154.doi: 10.1007/s10473-022-0107-y

• Articles • Previous Articles     Next Articles

THEORETICAL AND NUMERICAL STUDY OF THE BLOW UP IN A NONLINEAR VISCOELASTIC PROBLEM WITH VARIABLE-EXPONENT AND ARBITRARY POSITIVE ENERGY

Ala A. TALAHMEH1, Salim A. MESSAOUDI2, Mohamed ALAHYANE3   

  1. 1. Department of Mathematics, Birzeit University, West Bank, Birzeit, Palestine;
    2. Department of Mathematics, University of Sharjah, P.O. Box 27272, Sharjah, UAE;
    3. Department of Mathematics, RISE, University of Sharjah, P.O. Box 27272, Sharjah, UAE
  • Received:2020-08-06 Revised:2021-01-04 Online:2022-02-25 Published:2022-02-24
  • Contact: Salim A. MESSAOUDI,E-mail:smessaoudi@sharjah.ac.ae E-mail:smessaoudi@sharjah.ac.ae

Abstract: In this paper, we consider the following nonlinear viscoelastic wave equation with variable exponents:\[u_{tt}-\Delta u+\int_{0}^{t}g(t-\tau)\Delta u(x,\tau){\rm d}\tau +\mu u_t=|u|^{p(x)-2}u,\] where $\mu$ is a nonnegative constant and the exponent of nonlinearity $p(\cdot)$ and $g$ are given functions. Under arbitrary positive initial energy and specific conditions on the relaxation function $g$, we prove a finite-time blow-up result. We also give some numerical applications to illustrate our theoretical results.

Key words: nonlinear damping, blow up, finite time, variable nonlinearity, arbitrary positive energy

CLC Number: 

  • 35A01
Trendmd