Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (3): 887-908.doi: 10.1007/s10473-024-0307-8
Previous Articles Next Articles
Weiyuan Zou
Received:
2022-07-15
Revised:
2023-03-08
Online:
2024-06-25
Published:
2024-05-21
About author:
E-mail:zwy@amss.ac.cn
Supported by:
CLC Number:
Weiyuan Zou. THE GLOBAL EXISTENCE OF STRONG SOLUTIONS TO THERMOMECHANICAL CUCKER-SMALE-STOKES QUATIONS IN THE WHOLE DOMAIN[J].Acta mathematica scientia,Series B, 2024, 44(3): 887-908.
[1] Bae H O, Choi Y P, Ha S Y, Kang M J. Time-asymptotic interaction of flocking particles and incompressible viscous fluid.Nonlinearity, 2012, 25: 1155-1177 [2] Bae H O, Choi Y P, Ha S Y, Kang M J. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete Contin Dyn Syst, 2014, 34: 4419-4458 [3] Bae H O, Choi Y P, Ha S Y, Kang M J. Global existence of strong solution for the Cucker-Smale-Navier-Stokes system. J Differ Equat, 2014, 257: 2225-2255 [4] Bae H O, Choi Y P, Ha S Y, Kang M J. Global existence of strong solutions to the Cucker-Smale-Stokes system. J Math Fluid Mech, 2016, 18: 381-396 [5] Boudin L, Desvillettes L, Grandmont C, Moussa A. Global existence of solution for the coupled Vlasov and Navier-Stokes equations. Differential Integral Equations, 2009, 22: 1247-1271 [6] Carrillo J A, Choi Y P, Karper T K. On the analysis of a coupled kinetic-fluid model with local alignment forces. Ann I H Poincare-AN, 2016, 33: 273-307 [7] Choi Y P, Kwon B. Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations. Nonlinearity, 2015, 28: 3309-3336 [8] Bae H O, Choi Y P, Ha S Y, Kang M J. Global existence of strong solutions to the Cucker-Smale-Stokes system. J Math Fluid Mech, 2016, 18(2): 381-396 [9] Cucker F, Smale S. Emergent behavior in flocks. IEEE Trans Automat Control, 2007, 52: 852-862 [10] Choi Y P. Large-time behavior for the Vlasov/compressible Navier-Stokes equations. J Math Phys, 2016, 57: 071501 [11] Ha S Y, Ruggeri T. Emergent dynamics of a thermodynamically consistent particle model. Arch Ration Mech Anal, 2017, 223: 1397-1425 [12] Ha S Y, Kim J, Min C H, et al. A global existence of classical solutions to the hydrodynamic Cucker-Smale model in presence of a temperature field. Anal Appl, 2018, 16: 757-805 [13] Ha S Y, Kim J, Min C H, et al. Uniform stability and mean-field limit of a thermodynamic Cucker-Smale model. Quart Appl Math, 2019, 77: 131-176 [14] Ha S Y, Kim J, Ruggeri T. Emergent behaviors of thermodynamic Cucker-Smale particles. SIAM J Math Anal, 2018, 50: 3092-3121 [15] Dong J G, Ha S Y, Kim D, Kim J. Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles. J Differential Equations, 2019, 266: 2373-2407 [16] Baranger C, Boudin L, Jabin P E, Mancini S. A modeling of biospray for the upper airways. ESAIM Proc, 2005, 14: 41-47 [17] Sohr H.The Navier-Stokes Equations: An Elementary Functional Analytic Approach. Basel: Springer, 2012 [18] Li F, Mu Y, Wang D. Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Plank equations: global existence near the equilibrium and large time behavior. SIAM J Math Anal, 2017, 49: 984-1026 [19] Mellet A, Vasseur A. Global weak solutions for a Vlasov-Fokker-Plank/Navier-Stokes system of equations. Math Models Methods Appl Sci, 2007, 17: 1039-1063 [20] Giga Y, Sohr H. Abstract $L_p$ estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. J Funct Anal, 1991, 102(1): 72-94 [21] Hamdache K. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J Indust Appl Math, 1998, 15: 51-74 [22] Kim J, Zou W Y. Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes. Kinet Relat Models, 2020, 13: 623-651 [23] Jin C Y. Global existence of strong solutions to the Kinetic Cucker-Smale model coupled with the stokes equations. J Math Phys, 2021, 62: 021502 [24] Mathiaud J. Local smooth solutions of a thin spray model with collisions. Math Models Methods Appl Sci, 2010, 20: 191-221 [25] Yu C. Global weak solutions to the incompressible Navier-Stokes-Vlasov equations. J Math Pures Appl, 2013, 100: 275-293 [26] Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett, 1995, 75: 1226-1229 [27] Vinkovic I, Aguirre C, Simoëns S, Gorokhovski M. Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow. Int J Multiph Flow, 2006, 32: 344-364 [28] Wang D, Yu C. Global weak solutions to the inhomogeneous Navier-Stokes-Vlasov equations. J Differential Equations, 2014, 259: 3976-4008 |
|