Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (3): 1096-1114.doi: 10.1007/s10473-024-0318-5
Previous Articles Next Articles
Min Zhao1,*, Rong Yuan2
Received:
2022-08-31
Revised:
2023-10-07
Online:
2024-06-25
Published:
2024-05-21
Contact:
*Min Zhao, E-mail:About author:
Rong Yuan, E-mail:ryuan@bnu.edu.cn
Supported by:
CLC Number:
Min Zhao, Rong Yuan. THE PERSISTENCE OF SOLUTIONS IN A NONLOCAL PREDATOR-PREY SYSTEM WITH A SHIFTING HABITAT[J].Acta mathematica scientia,Series B, 2024, 44(3): 1096-1114.
[1] Bao X, Li W T, Shen W. Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats. J Differ Equ, 2016, 260: 8590-8637 [2] Berestycki H, Desvillettes L, Diekmann O. Can climate change lead to gap formation? Ecol Complex, 2014, 20: 264-270 [3] Berestycki H, Diekmann O, Nagelkerke C J, , [4] Berestycki H, Rossi L. Reaction-diffusion equations for population dynamics with forced speed I- The case of the whole space. Discrete Contin Dyn Syst Ser A, 2008, 21: 41-67 [5] Berestycki H, Fang J.Forced waves of the Fisher-KPP equation in a shifting environment. J Differ Equ, 2018, 264: 2157-2183 [6] Bouhours J, Giletti T. Spreading and vanishing for a monostable reaction-diffusion equation with forced speed. J Dyn Differ Equ, 2019, 31: 247-286 [7] Choi W, Giletti T, Guo J S. Persistence of species in a predator-prey system with climate change and either nonlocal or local dispersal. J Differ Equ, 2021, 302: 807-853 [8] Coville J. Can a population survive in a shifting environment using non-local dispersion? Nonlinear Anal, 2021, 212: 112416 [9] Dong F D, Li B, Li W T. Forced waves in a Lotka-Volterra competition-diffusion model with a shifting habitat. J Differ Equ, 2021, 276: 433-459 [10] Du Y, Wei L, Zhou L. Spreading in a shifting environment modeled by the diffusive logistic equation with a free boundary. J Dyn Differ Equ, 2018, 30: 1389-1426 [11] Fang J, Peng R, Zhao X Q. Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment. J Math Pures Appl, 2021, 147: 1-28 [12] Gonzalez P, Neilson R P, Lenihan J M, , [13] Hu C, Li B.Spatial dynamics for lattice differential equations with a shifting habitat. J Differ Equ, 2015, 259: 1967-1989 [14] Hu Y, Hao X, Song X, , [15] Hu H, Yi T, Zou X. On spatial-temporal dynamics of Fisher-KPP equation with a shifting environment. Proc Am Math Soc, 2020, 148: 213-221 [16] Hu H, Zou X. Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc Amer Math Soc, 2017, 145: 4763-4771 [17] Jin Y, Zhao X Q. Spatial dynamics of a periodic population model with dispersal. Nonlinearity, 2009, 22: 1167-1189 [18] Johnsgard P.Global Warming and Population Responses Among Great Plains Birds. Lincoln, Nebraska: Zea E-Books, 2015 [19] Kao C Y, Lou Y, Shen W. Random dispersal vs. non-local dispersal. Discrete Contin Dyn Syst, 2010, 26: 551-596 [20] Lee C T, Hoopes M F, Diehl J, , [21] Leenheer P D, Shen W, Zhang A. Persistence and extinction of nonlocal dispersal evolution equations in moving habitats. Nonlinear Anal: Real World Appl, 2020, 54: 103110 [22] Lei C, Du Y. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete Contin Dyn Syst Ser B, 2017, 22: 895-911 [23] Levin S A, Segal L A. Pattern generation in space and aspect. SIAM Rev, 1985, 27: 45-67 [24] Lewis M L, Petrovskii S V, Potts J R.The Mathematics Behind Biological Invasions. Interdisciplinary Applied Mathematics. Switzerland: Springer, 2016 [25] Li B, Bewick S, Shang J, , [26] Li B, Bewick S, Barnard M R, , [27] Li W T, Wang J B, Zhao X Q. Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J Nonlinear Sci, 2018, 28: 1189-1219 [28] Potapov A B, Lewis M A. Climate and competition: The effect of moving range boundaries on habitat invasibility. Bull Math Biol, 2004, 66: 975-1008 [29] Parr C L, Gray E F, Bond W J. Cascading bio diversity and functional consequences of a global change-induced biome switch. Divers Distrib, 2012, 18: 493-503 [30] Scheffer M, Hirota M, Holmgren M, [31] Vo H H. Persistence versus extinction under a climate change in mixed environments. J Differ Equ, 2015, 259: 4947-4988 [32] Wang J B, Zhao X Q. Uniqueness and global stability of forced waves in a shifting environment. Proc Amer Math Soc, 2019, 147: 1467-1481 [33] Wang H, Pan C, Ou C. Existence of forced waves and gap formations for the lattice Lotka-Volterra competition system in a shifting environment. Appl Math Lett, 2020, 106: 106349 [34] Wang J B, Li W T, Dong F D, , [35] Wang J B, Wu C. Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats. Nonlinear Anal: Real World Appl, 2021, 58: 103208 [36] Wu C F, Xiao D M, Zhao X Q. Spreading speeds of a partially degenerate reaction-diffusion system in a periodic habitat. J Differ Equ, 2013, 255: 3983-4011 [37] Wu C F, Wang Y, Zou X F. Spatial-temporal dynamics of a Lotka-Volterra competition model with nonlocal dispersal under shifting environment. J Differ Equ, 2019, 267: 4890-4921 [38] Yang Y, Wu C, Li Z. Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change. Appl Math Comput, 2019, 353: 254-264 [39] Yuan Y, Wang Y, Zou X. Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete Contin Dyn Syst Ser B, 2019, 24: 5633-5671 [40] Zhang Z, Wang W, Yang J. Persistence versus extinction for two competing species under a climate change. Nonlinear Anal: Model Control, 2017, 22: 285-302 [41] Zhang G B, Zhao X Q. Propagation dynamics of a nonlocal dispersal Fisher-KPP equation in a time-periodic shifting habitat. J Differ Equ, 2020, 268: 2852-2885 [42] Zhou Y, Kot M. Discrete-time growth-dispersal models with shifting species ranges. Theor Ecol, 2011, 4: 13-25 [43] Zhang G B, Zhao X Q. Propagation phenomena for a two-species Lotka-Volterra strong competition system with nonlocal dispersal. Calc Var Partial Differ Equ, 2019, 59: Art 10 [44] Zhao M, Yuan R, Ma Z H, , |
[1] | Yuxia HAO, Wantong LI, Jiabing WANG, Wenbing XU. ENTIRE SOLUTIONS OF LOTKA-VOLTERRA COMPETITION SYSTEMS WITH NONLOCAL DISPERSAL* [J]. Acta mathematica scientia,Series B, 2023, 43(6): 2347-2376. |
[2] | Mingxuan Zhu, Zaihong Jiang. THE CAUCHY PROBLEM FOR THE CAMASSA-HOLM-NOVIKOV EQUATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 736-750. |
[3] | Mingzhan HUANG, Shouzong LIU, Xinyu SONG, Xiufen ZOU. CONTROL STRATEGIES FOR A TUMOR-IMMUNE SYSTEM WITH IMPULSIVE DRUG DELIVERY UNDER A RANDOM ENVIRONMENT [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1141-1159. |
[4] | Lu YANG, Yun-Rui YANG, Xue SONG. TRAVELING WAVES IN A SIRH MODEL WITH SPATIO-TEMPORAL DELAY AND NONLOCAL DISPERSAL [J]. Acta mathematica scientia,Series B, 2022, 42(2): 715-736. |
[5] | Qixing HAN, Daqing JIANG. DYNAMIC FOR A STOCHASTIC MULTI-GROUP AIDS MODEL WITH SATURATED INCIDENCE RATE [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1883-1896. |
[6] | Tao SU, Guobao ZHANG. INVASION TRAVELING WAVES FOR A DISCRETE DIFFUSIVE RATIO-DEPENDENT PREDATOR-PREY MODEL [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1459-1476. |
[7] | Jing FU, Daqing JIANG, Ningzhong SHI, Tasawar HAYAT, Ahmed ALSAEDI. QUALITATIVE ANALYSIS OF A STOCHASTIC RATIO-DEPENDENT HOLLING-TANNER SYSTEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 429-440. |
[8] | Xianzhong ZENG, Yonggeng GU. PERSISTENCE AND THE GLOBAL DYNAMICS OF THE POSITIVE SOLUTIONS FOR A RATIODEPENDENT PREDATOR-PREY SYSTEM WITH A CROWDING TERM IN THE PREY EQUATION [J]. Acta mathematica scientia,Series B, 2016, 36(3): 689-703. |
[9] | Lu YANG, Yimin ZHANG. POSITIVE STEADY STATES AND DYNAMICS FOR A DIFFUSIVE PREDATOR-PREY SYSTEM WITH A DEGENERACY [J]. Acta mathematica scientia,Series B, 2016, 36(2): 537-548. |
[10] | LU Chun, DING Xiao-Hua. PERSISTENCE AND EXTINCTION OF A STOCHASTIC LOGISTIC MODEL WITH DELAYS AND IMPULSIVE PERTURBATION [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1551-1570. |
[11] | FU Ying, QU Chang-Zheng. UNIQUE CONTINUATION AND PERSISTENCE PROPERTIES OF SOLUTIONS OF THE 2-COMPONENT DEGASPERIS-PROCESI#br# EQUATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(2): 652-662. |
[12] | QIAO Mei-Hong, QI Huan, CHEN Ying-Chun. QUALITATIVE ANALYSIS OF HEPATITIS B VIRUS INFECTION MODEL WITH IMPULSIVE VACCINATION AND TIME DELAY [J]. Acta mathematica scientia,Series B, 2011, 31(3): 1020-1034. |
[13] | Liu Shaoping; Liao Xiaoxin. PERMANENCE AND PERSISTENCE OF TIME VARYING LOTKA-VOLTERRA SYSTEMS [J]. Acta mathematica scientia,Series B, 2006, 26(1): 49-58. |
[14] | BAI Yu-Zhen, SHU De-Meng. PERSISTENCE OF RESONANT INVARIANT TORI WITH NON-HAMILTONIAN PERTURBATION [J]. Acta mathematica scientia,Series B, 2005, 25(3): 481-491. |
[15] |
CHEN Han-Lin, GUO Bai-Lin.
THE INVARIANT MANIFOLDS FOR A PERTURBED QUINTIC-CUBIC SCHR¨|ODINGER EQUATION 1 [J]. Acta mathematica scientia,Series B, 2004, 24(4): 536-548. |
|