Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (3): 1141-1159.doi: 10.1007/s10473-022-0319-1
• Articles • Previous Articles Next Articles
Mingzhan HUANG1, Shouzong LIU1, Xinyu SONG1, Xiufen ZOU2
Received:
2020-12-18
Revised:
2021-04-11
Published:
2022-06-24
Contact:
Xinyu SONG,E-mail:xysong88@163.com
E-mail:xysong88@163.com
Supported by:
CLC Number:
Mingzhan HUANG, Shouzong LIU, Xinyu SONG, Xiufen ZOU. CONTROL STRATEGIES FOR A TUMOR-IMMUNE SYSTEM WITH IMPULSIVE DRUG DELIVERY UNDER A RANDOM ENVIRONMENT[J].Acta mathematica scientia,Series B, 2022, 42(3): 1141-1159.
[1] Ahmedin J, Freddie B, Melissa M C, et al. Global cancer statistics. CA:A Cancer Journal for Clinicians, 2011, 61(2):69-90 [2] Freddie B, Jacques F, Isabelle S, et al. Global cancer statistics 2018:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA:A Cancer Journal for Clinicians, 2018, 68(6):394-424 [3] World Health Organization. World health statistics 2016:mMonitoring hHealth for the SDGs sustainable development goals. Geneva, Switzerland:World Health Organization, 2016 [4] Lindsey A T, Freddie B, Rebecca L S, et al. Global cancer statistics, 2012. CA:A Cancer Journal for Clinicians, 2015, 65(2):87-108 [5] Marek B, Monika J P. Stability analysis of the family of tumour angiogenesis models with distributed time delays. Commun Nonlinear Sci Numer Simul, 2016, 31(1/8):124-142 [6] Liu X D, Li Q Z, Pan J X. A deterministic and stochastic model for the system dynamics of tumor-immune responses to chemotherapy. Physica A:Statistical Mechanics and its Applications, 2018, 500:162-176 [7] Bellomo N, Preziosi L. Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Math Comput Modell, 2000, 32(3/8):413-452 [8] Pillis L G D, Radunskaya A E, Wiseman C L. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res, 2005, 65:235-252 [9] Radouane Y. Hopf bifurcation in differential equations with delay for tumor-immune system competition model. SIAM J Appl Math, 2007, 67(6):1693-1703 [10] Saleem M, Tanuja A. Chaos in a tumor growth model with delayed responses of the immune system. J Appl Math, 2012, 2012:1-16 [11] Wang S L, Wang S L, Song X Y. Hopf bifurcation analysis in a delayed oncolytic virus dynamics with continuous control. Nonlinear Dynam, 2012, 67(1):629-640 [12] Dong Y P, Rinko M, Yasuhiro T. Mathematical modeling on helper t cells in a tumor immune system. Discrete Contin Dyn Syst -Ser B, 2014, 19(1):55-72 [13] Fuat G, Senol K, Ilhan O, Fatma B. Stability and bifurcation analysis of a mathematical model for tumor cimmune interaction with piecewise constant arguments of delay. Chaos Solitons Fractals, 2014, 68:169-179 [14] Subhas K, Sandip B. Stability and bifurcation analysis of delay induced tumor immune interaction model. Appl Math Comput, 2014, 248:652-671 [15] Rihan F A, Rahman D H A, Lakshmanan S, Alkhajeh A S. A time delay model of tumour-immune system interactions:global dynamics, parameter estimation, sensitivity analysis. Appl Math Comput, 2014, 232(1):606-623 [16] Subhas K. Bifurcation analysis of a delayed mathematical model for tumor growth. Chaos Solitons Fractals, 2015, 77:264-276 [17] Dong Y P, Huang G, Rinko M, Yasuhiro T. Dynamics in a tumor immune system with time delays. Appl Math Comput, 2015, 252:99-113 [18] Pang L Y, Shen L, Zhao Z. Mathematical modelling and analysis of the tumor treatment regimens with pulsed immunotherapy and chemotherapy. Comput Math Methods Med, 2016 (2016) [19] López A G, Seoane J M, Sanjuán M A F. Bifurcation analysis and nonlinear decay of a tumor in the presence of an immune response. Int J Bifurcat Chaos, 2017, 27(14):1750223 [20] Ansarizadeh F, Singh M, Richards D. Modelling of tumor cells regression in response to chemotherapeutic treatment. Applied Mathematical Modelling, 2017, 48:96-112 [21] López A G, Iarosz K C, Batista A M, et al. Nonlinear cancer chemotherapy:modelling the NortonSimon hypothesis. Commun Nonlinear Sci Numer Simulat, 2019, 70:307-317 [22] Lisette G D P, Radunskaya A. The dynamics of an optimally controlled tumor model:a case study. Math Comput Modelling, 2003, 37(11):1221-1244 [23] Lisette G D P, Gu W, Fister K R, et al. Chemotherapy for tumors:an analysis of the dynamics and a study of quadratic and linear optimal controls. Math Biosci, 2007, 209(1):292-315 [24] Alberto D O, Urszula L, Helmut M, Heinz S. On optimal delivery of combination therapy for tumors. Math Biosci, 2009, 222(1):13-26 [25] Mehmet I, Metin U S, Stephen P B. Optimal control of drug therapy in cancer treatment. Nonlinear Analysis:Theory. Methods & Applications, 2009, 71(12):e1473-e1486 [26] Rihan F A, Abdelrahman D H, Al-Maskari F, et al. Delay differential model for tumour-immune response with chemoimmunotherapy and optimal control. Comput Math Methods Med, 2014 (2014):1-15 [27] Pang L Y, Zhao Z, Song X Y. Cost-effectiveness analysis of optimal strategy for tumor treatment. Chaos Solitons Fractals, 2016, 87:293-301 [28] Sarkar R R, Sandip B. Cancer self remission and tumor stability-a stochastic approach. Math Biosci, 2005, 196(1):65-81 [29] Albano G, Giorno V. A stochastic model in tumor growth. J Theoret Biol, 2006, 242(2):329-336 [30] Thomas B, Steffen T. Stochastic model for tumor growth with immunization. Phys Rev E, 2009, 79(5):051903 [31] Xu Y, Feng J, Li J J, Zhang H Q. Stochastic bifurcation for a tumor-immune system with symmetric lvy noise. Physica A:Statal Mechanics and its Applications, 2013, 392(20):4739-4748 [32] Kim K S, Kim S, Jung I H. Dynamics of tumor virotherapy:a deterministic and stochastic model approach. Stoch Anal Appl, 2016, 34(3):483-495 [33] Deng Y, Liu M. Analysis of a stochastic tumor-immune model with regime switching and impulsive perturbations. Applied Mathematical Modelling, 2020, 78:482-504 [34] Bashkirtseva I, Ryashko L, Dawson K A, et al. Analysis of noise-induced phenomena in the nonlinear tumor-mmune system. Physica A:Statal Mechanics and its Applications, 2019, 549:123923 [35] Samanta G P, Ricardo G A, Sharma S. Analysis of a mathematical model of periodically pulsed chemotherapy treatment. International Journal of Dynamics and Control, 2015, 5(3):842-857 [36] Samanta G P, Sen P, Maiti A. A delayed epidemic model of diseases through droplet infection and direct contact with saturation incidence and pulse vaccination. Systems Science and Control Engineering, 2016, 4(1):320-333 [37] Samanta G P, Ricardo G A. Analysis of a delayed epidemic model of diseases through droplet infection and direct contact with pulse vaccination. International Journal of Dynamics and Control, 2015, 3(3):275-287 [38] Samanta G P. Mathematical Analysis of a Chlamydia Epidemic Model with Pulse Vaccination Strategy. Acta Biotheoretica, 2015, 63(1):1-21 [39] Samanta G P, Sharma S. Analysis of a delayed Chlamydia epidemic model with pulse vaccination. Applied Mathematics and Computation, 2014, 230:555-569 [40] Samanta G P. Analysis of a delayed epidemic model with pulse vaccination. Chaos, Solitons and Fractals, 2014, 66:74-85 [41] Samanta G P, Bera S P. Analysis of a Chlamydia epidemic model with pulse vaccination strategy in a random environment. Nonlinear Analysis:Modelling and Control, 2018, 23(4):457-474 [42] Jing Y, Mei L Q, Song X Y, Tian W J, Ding X M. Analysis of an impulsive epidemic model with time delays and nonlinear incidence rate. Acta Mathematica Scientia, 2012, 32A(4):670-684 [43] Ling L, Liu S Y, Jiang G R. Bifurcation analysis of a SIRS epidemic model with saturating contact rate and vertical transmission. Acta Mathematica Scientia, 2014, 34A(6):1415-1425 [44] Ma Z E, Cui G R, Wang W D. Persistence and extinction of a population in a polluted environment. Math Biosci, 1990, 101:75-97 [45] Ma Z E, Hallam T G. Effects of parameter fluctuations on community survival. Math Biosci, 1987, 86(1):35-49 [46] Liu M, Wang K. Persistence and extinction in stochastic non-autonomous logistic systems. J Math Anal Appl, 2011, 375(2):443-57 [47] Li D X, Cheng F J. Threshold for extinction and survival in stochastic tumor immune system. Communications in Nonlinear ence & Numerical Simulations, 2017, 51(OCT):1-12 [48] Lan G J, Ye C, Zhang S W, Wei C J. Dynamics of a stochastic glucose-insulin model with impulsive injection of insulin. Commun Math Biol Neurosci, 2020, 2020:6 [49] Kloeden P E, Platen E. Numerical solution of stochastic differential equations. New York:Springer-Verlag, 1992 [50] Shochat E, Hart D, Agur Z. Using computer simulations for evaluating the efficacy of breast cancer chemotherapy protocols. Mathematical Models and Methods in Applied Sciences, 1999, 9(4):599-615 |
[1] | Qixing HAN, Daqing JIANG. DYNAMIC FOR A STOCHASTIC MULTI-GROUP AIDS MODEL WITH SATURATED INCIDENCE RATE [J]. Acta mathematica scientia,Series B, 2020, 40(6): 1883-1896. |
[2] | Liya LIU, Daqing JIANG, Tasawar HAYAT, Bashir AHMAD. DYNAMICS OF A HEPATITIS B MODEL WITH SATURATED INCIDENCE [J]. Acta mathematica scientia,Series B, 2018, 38(6): 1731-1750. |
[3] | Jing FU, Daqing JIANG, Ningzhong SHI, Tasawar HAYAT, Ahmed ALSAEDI. QUALITATIVE ANALYSIS OF A STOCHASTIC RATIO-DEPENDENT HOLLING-TANNER SYSTEM [J]. Acta mathematica scientia,Series B, 2018, 38(2): 429-440. |
[4] | Qun LIU, Daqing JIANG, Ningzhong SHI, Tasawar HAYAT, Ahmed ALSAEDI. DYNAMICAL BEHAVIOR OF A STOCHASTIC HBV INFECTION MODEL WITH LOGISTIC HEPATOCYTE GROWTH [J]. Acta mathematica scientia,Series B, 2017, 37(4): 927-940. |
[5] | Xianzhong ZENG, Yonggeng GU. PERSISTENCE AND THE GLOBAL DYNAMICS OF THE POSITIVE SOLUTIONS FOR A RATIODEPENDENT PREDATOR-PREY SYSTEM WITH A CROWDING TERM IN THE PREY EQUATION [J]. Acta mathematica scientia,Series B, 2016, 36(3): 689-703. |
[6] | Haixia LI, Yuzhu HAN, Wenjie GAO. CRITICAL EXTINCTION EXPONENTS FOR POLYTROPIC FILTRATION EQUATIONS WITH NONLOCAL SOURCE AND ABSORPTION [J]. Acta mathematica scientia,Series B, 2015, 35(2): 366-374. |
[7] | LU Chun, DING Xiao-Hua. PERSISTENCE AND EXTINCTION OF A STOCHASTIC LOGISTIC MODEL WITH DELAYS AND IMPULSIVE PERTURBATION [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1551-1570. |
[8] | FU Ying, QU Chang-Zheng. UNIQUE CONTINUATION AND PERSISTENCE PROPERTIES OF SOLUTIONS OF THE 2-COMPONENT DEGASPERIS-PROCESI#br# EQUATIONS [J]. Acta mathematica scientia,Series B, 2012, 32(2): 652-662. |
[9] | QIAO Mei-Hong, QI Huan, CHEN Ying-Chun. QUALITATIVE ANALYSIS OF HEPATITIS B VIRUS INFECTION MODEL WITH IMPULSIVE VACCINATION AND TIME DELAY [J]. Acta mathematica scientia,Series B, 2011, 31(3): 1020-1034. |
[10] | WANG Wei-Gang, LI Yan, HU Di-He. EXTINCTION OF POPULATION-SIZE-DEPENDENT BRANCHING CHAINS IN RANDOM ENVIRONMENTS [J]. Acta mathematica scientia,Series B, 2010, 30(4): 1065-1072. |
[11] | LA Guo-Lie, MA Zhi-Meng, SUN Su-Yong. ON THE BASIC REPRODUCTION NUMBER OF GENERAL BRANCHING PROCESSES [J]. Acta mathematica scientia,Series B, 2009, 29(4): 1081-1094. |
[12] | Xing Yongsheng; Wang Xueqiang. ON THE EXTINCTION OF POPULATION-SIZE-DEPENDENT BISEXUAL GALTON-WATSON PROCESSES [J]. Acta mathematica scientia,Series B, 2008, 28(1): 210-216. |
[13] | Liu Shaoping; Liao Xiaoxin. PERMANENCE AND PERSISTENCE OF TIME VARYING LOTKA-VOLTERRA SYSTEMS [J]. Acta mathematica scientia,Series B, 2006, 26(1): 49-58. |
[14] | BAI Yu-Zhen, SHU De-Meng. PERSISTENCE OF RESONANT INVARIANT TORI WITH NON-HAMILTONIAN PERTURBATION [J]. Acta mathematica scientia,Series B, 2005, 25(3): 481-491. |
[15] |
CHEN Han-Lin, GUO Bai-Lin.
THE INVARIANT MANIFOLDS FOR A PERTURBED QUINTIC-CUBIC SCHR¨|ODINGER EQUATION 1 [J]. Acta mathematica scientia,Series B, 2004, 24(4): 536-548. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|