[1] Baker G L, Blackbuen J A.The Pendulum: A Case Study in Physics. New York: Oxford University Press, 2005 [2] Belley J, Drissi K S. Almost periodic solutions to Josephson's equation. Nonlinearity, 2003, 16: 35-47 [3] Christopher C, Li C.Limit Cycles of Differential Equations. Berlin: Birkhäuser Verlag, 2007 [4] Gasull A, Geyer A,Mañosas F. On the number of limit cycles for perturbed pendulum equations. J Differential Equations, 2016, 261: 2141-2167 [5] Gasull A, Li C, Torregrosa J. A new Chebyshev family with applications to Abel equations. J Differential Equations, 2012, 252: 1635-1641 [6] Hilbert D. Mathematical problems. Bull Amer Math Soc, 1902, 8: 437-479 [7] Han M. Asymptotic expansions of Melnikov functions and limit cycle bifurcations. Internat J Bifur Chaos Appl Sci Engrg, 2012, 22(12): 1250296 [8] Han M, Li J. Lower bounds for the Hilbert number of polynomial systems. J Differential Equations, 2012, 252: 3278-3304 [9] Han M, Sheng L. Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J Appl Anal Comput, 2015, 5: 809-815 [10] Inoue K. Perturbed motion of a simple pendulum. J Physical Society of Japan, 1988, 57: 1226-1237 [11] Ilyashenko Y. Centennial history of Hilbert's 16th problem. Bulletin of the American Mathematical Society, 2022, 39(3): 301-354 [12] Jing Z, Cao H. Bifurcations of periodic orbits in a Josephson equation with a phase shift. International Journal of Bifurcation and Chaos, 2002, 12: 1515-1530 [13] Jing Z. Chaotic behavior in the Josephson equations with periodic force. SIAM J Appl Math, 1989, 49: 1749-1758 [14] Karlin S, Studden W.Tchebycheff Systems: With Applications in Analysis and Statistic. New York: Interscience Publishers, 1966 [15] Kauderer H. Nichtlineare Mechanik. Berlin: Springer Verlag, 1958 [16] Li C, Zhang Z. A criterion for determining the monotonicity of the ratio of two abelian integrals. J Differential Equations, 1996, 124: 407-424 [17] Liang F, Han M. Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems. Chaos Solitons Fractals, 2012, 45: 454-464 [18] Liang F, Han M, Romanovski V. Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop. Nonlinear Anal, 2012, 75: 4355-4374 [19] Lichardová H. Limit cycles in the equation of whirling pendulum with autonomous perturbation. Appl Math, 1999, 44: 271-288 [20] Lichardová H. The period of a whirling pendulum. Mathematica Bohemica, 2001, 3: 593-606 [21] Liu X, Han M. Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems. Internat J Bifur Chaos Appl Sci Engrg, 2010, 20: 1379-1390 [22] Llibre J, Ramírez R, Ramírez V, Sadovskaia N. The 16th Hilbert problem restricted to circular algebraic limit cycles. J Differ Equ, 2016, 260: 5726-5760 [23] Mitrinović D S. Analytic Inequalities.New York: Springer-Verlag, 1970 [24] Mardešić P. Chebyshev Systems and the Versal Unfolding of the Cusp of Order $n$. Paris: Hermann, 1998 [25] Minorski N. Nonlinear Oscillations. New York: Van Nostrand, 1962 [26] Mawhin J. Global results for the forced pendulum equation//Canada A, Drabek P, Fonda A. Handbook of Differential Equations. Amsterdam: Elsevier, 2004: 533-589 [27] Morozov A D. Limit cycles and chaos in equations of the pendulum type. PMM USSR, 1989, 53: 565-572 [28] Pontryagin L. On dynamical systems close to hamiltonian ones. Zh Exp Theor Phys, 1934, 4: 234-238 [29] Sanders J A, Cushman R. Limit cycles in the Josephson equation. SIAM J Math Anal, 1986, 17: 495-511 [30] Smale S. Mathematical problems for the next century. Math Intell, 1998, 20: 7-15 [31] Teixeira M.Perturbation Theory for Non-Smooth Systems. New York: Springer-Verlag, 2009 [32] Wang N, Wang J, Xiao D. The exact bounds on the number of zeros of complete hyperelliptic integrals of the first kind. J Differential Equations, 2013, 254: 323-341 [33] Wei L, Zhang X. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36(5): 2803-2825 [34] Xiong Y, Han M. Limit cycle bifurcations in a class of perturbed piecewise smooth systems. Applied Mathematics and Computation, 2014, 242: 47-64 [35] Xiong Y, Han M, Romanovski V G. The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles. Internat J Bifur Chaos, 2017, 27(8): 1750126 [36] Yang J. On the number of limit cycles of a pendulum-like equation with two switching lines. Chaos, Solitons and Fractals, 2021, 150: 111092 [37] Yang J, Zhang E. On the number of limit cycles for a class of piecewise smooth Hamiltonian systems with discontinuous perturbations. Nonlinear Analysis: Real World Applications, 2020, 52: 103046 [38] Yang J, Zhao L. Bifurcation of limit cycles of a piecewise smooth Hamiltonian system. Qualitative Theory of Dynamical Systems, 2022, 21: Art 142 [39] Zhao Y, Zhang Z. Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians. J Differential Equations, 1999, 155: 73-88 |