Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (3): 1046-1063.doi: 10.1007/s10473-024-0316-7
Previous Articles Next Articles
Xinyu Tu1,2, Chunlai Mu3,*, Shuyan Qiu4, Jing Zhang5
Received:
2023-01-21
Revised:
2023-06-02
Online:
2024-06-25
Published:
2024-05-21
Contact:
*Chunlai Mu, E-mail:About author:
Xinyu Tu,E-mail:xinyutututu@163.com;Shuyan Qiu, E-mail:shuyanqiu0701@126.com; Jing Zhang, E-mail:zj188838@163.com
Supported by:
CLC Number:
Xinyu Tu, Chunlai Mu, Shuyan Qiu, Jing Zhang. DYNAMICS FOR A CHEMOTAXIS MODEL WITH GENERAL LOGISTIC DAMPING AND SIGNAL DEPENDENT MOTILITY[J].Acta mathematica scientia,Series B, 2024, 44(3): 1046-1063.
[1] Arumugam G, Tyagi J.Keller-Segel chemotaxis models: A review. Acta Appl Math, 2021, 171: Art 6 [2] Bellomo N, Bellouquid A, Tao Y, Winkler M. Toward a mathematical theory of Keller-Segel models of pattern formation on biological tissues. Math Models Methods Appl Sci, 2015, 25: 1663-1763 [3] Burger M, Laurencot P, Trescases A. Delayed blow-up for chemotaxis models with local sensing. J Lond Math Soc, 2021, 103: 1596-1617 [4] Chu J, Jin H, Xiong L. Global dynamics of a tumor invasion model with/without logistic source. Z Angew Math Phys, 2021, 72: Art 181 [5] Fujie K. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete Contin Dyn Syst Ser S, 2020, 13: 203-209 [6] Fujie K, Ishida S, Ito A, Yokota T. Large time behavior in a chemotaxis model with nonlinear general diffusion for tumor invasion. Funkcial Ekvac, 2018, 61: 37-80 [7] Fujie K, Ito A, Winkler M, Yokota T. Stabilization in a chemotaxis model for tumor invasion. Discrete Contin Dyn Syst, 2016, 36: 151-169 [8] Fujie K, Ito A, Yokota T. Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type. Adv Math Sci Appl, 2014, 24: 67-84 [9] Fujie K, Jiang J. Global existence for a kinetic model of pattern formation with density-suppressed motilities. J Differential Equations, 2020, 269: 5338-5378 [10] Fujie K, Jiang J. Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities. Acta Appl Math, 2021, 176: Art 3 [11] Fujie K, Jiang J. Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities. Calc Var Partial Differential Equations, 2021, 60: Art 92 [12] From1970 until present: the Keller-Segel model in chemotaxis and its consequences I. Jahresber Deutsch Math-Verein, 2003, 105: 103-165 [13] Ito A. A mass-conserved tumor invasion systemwith quasi-variational degenerate diffusion. Anal Appl, 2022, 20: 615-680 [14] Jin H, Kim Y, Wang Z. Boundedness, stabilization,pattern formation driven by density-suppressed motility. SIAM J Math, 2018, 78: 1632-1657 [15] Jin H, Liu Z, Shi S. Global dynamics of a quasilinear chemotaxis model arising from tumor invasion. Nonlinear Anal: Real World Appl, 2018, 44: 18-39 [16] Jin H, Wang Z. Critical mass on the Keller-Segel system with signal-dependent motility. Proc Amer Math Soc, 2020, 148: 4855-4873 [17] Jin H, Wang Z. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete Contin Dyn Syst Ser B, 2021, 26: 3023-3041 [18] Jin H, Xiang T. Boundedness and exponential convergence in a chemotaxis model for tumor invasion. Nonlinearity, 2016, 29: 3579-3596 [19] Keller E, Segel L. Model for chemotaxis. J Theor Biol, 1971, 30: 225-234 [20] Li D, Wu C. Effects of density-suppressed motility in a two-dimensional chemotaxis model arising from tumor invasion. Z Angew Math Phys, 2020, 71: Art 153 [21] Liu C, Fu X, Liu L, et al. Sequential establishment of stripe patterns in an expanding cell population. Science, 2011, 334: 238-241 [22] Liu Z, Xu J. Large time behavior of solutions for density-suppressed motility system in higher dimensions. J Math Anal Appl, 2019, 475: 1596-1613 [23] Lv W, Wang Q. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evol Equ Control Theory, 2021, 10: 25-36 [24] Lv W, Wang Q. An $n$-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: global existence and asymptotic stabilization. Proc Roy Soc Edinburgh Sect A, 2021, 151: 821-841 [25] Lyu W, Wang Z. Logistic damping effect in chemotaxis models with density-suppressed motility. Adv Nonlinear Anal, 2022, 12: 336-355 [26] Mizoguchi N, Souplet P. Nondegeneracy of blow-up points for the parabolic Keller-Segel system. Ann Inst H Poincaré Anal Non Liné$aire, 2014, 31: 851-875 [27] Osawa R, Yokota T. Boundedness in a chemotaxis model with nonlinear diffusion and logistic type source for tumor invasion. Adv Math Sci Appl, 2018, 27: 225-240 [28] Tao X, Fang Z. Global boundedness and stability in a density-suppressed motility model with generalized logistic source and nonlinear signal production. Z Angew Math Phys, 2022, 73: Art 123 [29] Tao Y, Winkler M. Effects of signal-dependent motilities in a Keller-Segel-type reaction-diffusion system. Math Models Methods Appl Sci, 2017, 27: 1645-1683 [30] Teller J. On a comparison method for a parabolic-elliptic system of chemotaxis with density-suppressed motility and logistic growth. Rev Real Acad Cienc Exactas Fis Nat Ser A-Mat, 2022, 116: Art 109 [31] Tu X, Mu C, Qiu S, Zhang J. Boundedness and asymptotic stability in a chemotaxis model with signal-dependent motility and nonlinear signal secretion. Commun Math Anal Appl, 2022, 1: 568-589 [32] Wang J, Wang M. Boundedness in the higher-dimensional Keller-Segel model with signal-dependent motility and logistic growth. J Math Phys, 2019, 60: 011507 [33] Winkler M. Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J Differential Equation, 2010, 248: 2889-2905 [34] Yoon C, Kim Y. Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion. Acta Appl Math, 2017, 149: 101-123 |
[1] | Xiaoshan Wang, Zhongqian Wang, Zhe Jia. GLOBAL WEAK SOLUTIONS FOR AN ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH $p$-LAPLACIAN DIFFUSION AND LOGISTIC SOURCE [J]. Acta mathematica scientia,Series B, 2024, 44(3): 909-924. |
[2] | Xianyong Huang, Xunhuan Deng, Qiru Wang. THE ASYMPTOTIC BEHAVIOR AND OSCILLATION FOR A CLASS OF THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2024, 44(3): 925-946. |
[3] | Wei Ding, Yan Tang, Yueping Zhu. THE BOUNDEDNESS OF OPERATORS ON WEIGHTED MULTI-PARAMETER LOCAL HARDY SPACES* [J]. Acta mathematica scientia,Series B, 2024, 44(1): 386-404. |
[4] | Yuecai Han, Dingwen Zhang. NADARAYA-WATSON ESTIMATORS FOR REFLECTED STOCHASTIC PROCESSES* [J]. Acta mathematica scientia,Series B, 2024, 44(1): 143-160. |
[5] | Fen HE, Zhen WANG, Tingting CHEN. THE SHOCK WAVES FOR A MIXED-TYPE SYSTEM FROM CHEMOTAXIS∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1717-1734. |
[6] | Minghua Yang, Jinyi Sun, Zunwei Fu, Zheng Wang. THE SINGULAR CONVERGENCE OF A CHEMOTAXIS-FLUID SYSTEM MODELING CORAL FERTILIZATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 492-504. |
[7] | Haiyang Jin, Kaiying Xu. BOUNDEDNESS OF A CHEMOTAXIS-CONVECTION MODEL DESCRIBING TUMOR-INDUCED ANGIOGENESIS* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 156-168. |
[8] | Yujuan CHEN, Lei WEI, Yimin ZHANG. THE ASYMPTOTIC BEHAVIOR AND SYMMETRY OF POSITIVE SOLUTIONS TO p-LAPLACIAN EQUATIONS IN A HALF-SPACE [J]. Acta mathematica scientia,Series B, 2022, 42(5): 2149-2164. |
[9] | Jie JIANG. BOUNDEDNESS AND EXPONENTIAL STABILIZATION IN A PARABOLIC-ELLIPTIC KELLER–SEGEL MODEL WITH SIGNAL-DEPENDENT MOTILITIES FOR LOCAL SENSING CHEMOTAXIS [J]. Acta mathematica scientia,Series B, 2022, 42(3): 825-846. |
[10] | Shuyan QIU, Chunlai MU, Hong YI. BOUNDEDNESS AND ASYMPTOTIC STABILITY IN A PREDATOR-PREY CHEMOTAXIS SYSTEM WITH INDIRECT PURSUIT-EVASION DYNAMICS [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1035-1057. |
[11] | Yaxian MA, Xianwen ZHANG. ASYMPTOTIC GROWTH BOUNDS FOR THE VLASOV-POISSON SYSTEM WITH RADIATION DAMPING [J]. Acta mathematica scientia,Series B, 2022, 42(1): 91-104. |
[12] | Jianjun JIN, Shuan TANG. GENERALIZED CESÀRO OPERATORS ON DIRICHLET-TYPE SPACES [J]. Acta mathematica scientia,Series B, 2022, 42(1): 212-220. |
[13] | Naiqi SONG, Heping LIU, Jiman ZHAO. BILINEAR SPECTRAL MULTIPLIERS ON HEISENBERG GROUPS [J]. Acta mathematica scientia,Series B, 2021, 41(3): 968-990. |
[14] | Abdelkrim MOUSSAOUI, Jean VELIN. EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR SYSTEMS OF QUASILINEAR ELLIPTIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(2): 397-412. |
[15] | Jishan FAN, Fucai LI, Gen NAKAMURA. THE LOCAL WELL-POSEDNESS OF A CHEMOTAXIS-SHALLOW WATER SYSTEM WITH VACUUM [J]. Acta mathematica scientia,Series B, 2021, 41(1): 231-240. |
|