Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (4): 1881-1914.doi: 10.1007/s10473-023-0425-8
Previous Articles Next Articles
Minghong XIE1, Zhong TAN2,3,†
Received:
2021-12-07
Revised:
2022-05-04
Published:
2023-08-08
Contact:
†Zhong TAN, E-mail: About author:
Minghong XIE, E-mail: xiemh0622@hotmail.com
Supported by:
Minghong XIE, Zhong TAN. THE GLOBAL SOLUTION AND BLOWUP OF A SPATIOTEMPORAL EIT PROBLEM WITH A DYNAMICAL BOUNDARY CONDITION∗[J].Acta mathematica scientia,Series B, 2023, 43(4): 1881-1914.
[1] Abels H, Butz J. Short time existence for the curve diffusion flow with a contact angle. J Differential Equations, 2019, 268(1): 318-352 [2] Abramowitz M, Stegun I A.Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington DC: National Bureau of Standards, 1964 [3] Albuquerque Y F, Laurain A, Sturm K. A shape optimization approach for electrical impedance tomography with point measurements. Inverse Problems, 2020, 36(9): 095006 [4] Amann H, Fila M. A Fujita-type theorem for the Laplace equation with a dynamical boundary condition. Acta Math Univ Comeniane, 1997, 56(2): 321-328 [5] Arendt W, Ter Elst A F M. The Dirichlet-to-Neumann operator on rough domains. J Differential Equations, 2011, 251(8): 2100-2124 [6] Arendt W, Ter Elst A F M, Warma M. Fractional powers of sectorial operators via the Dirichlet-to-Neumann operator. Comm Partial Differential Equations, 2018, 43(1): 1-24 [7] Barrios B, Colorado E, Pablo A D, S$\acute{\rm a}$nchez U. On some critical problems for the fractional Laplacian operator. J Differential Equations, 2012, 252(11): 6133-6162 [8] Biler P, Pilarczyk D. Around a singular solution of a nonlocal nonlinear heat equation. Nonlinear Differ Equ Appl, 2019, 26(1): 1-24 [9] Borcea L, Gray G A, Zhang Y. Variationally constrained numerical solution of electrical impedance tomography. Inverse Problems, 2003, 19(5): 1159-1184 [10] Brándle C, Colorado E, Pablo A D. A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2013, 143(1): 39-71 [11] Brezis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3): 486-486 [12] Brezis H. Elliptic equations with limiting Sobolev exponents-the impact of topology. Comm Pure Appl Math, 1986, 39(S1): S17-S39 [13] Cabré X, Tan J G. Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv Math, 2010, 224(5): 2052-2093 [14] Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Comm Partial Differential Equations, 2007, 32(8): 1245-1260 [15] Capella A, Dávila J Dupaigne L,et al. Regularity of radial extremal solutions for some non-local semilinear equations. Comm Partial Differential Equations,2011, 36(8): 1353-1384 [16] Cazenave T, Lions P L. Solutions globales d'Equations de la chaleur semilineaires. Commun in Partial Differential Equations, 1984, 9(10): 955-978 [17] Chen G Y, Wei J C, Zhou Y F. Finite time blow-up for the fractional critical heat equation in $R^n$. Nonlinear Anal, 2019, 193: 111420 [18] Chen W X, Li C M, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59(3): 330-343 [19] Chen W X, Qi S J. Direct methods on fractional equations. Discrete Contin Dyn Syst, 2019, 39(3): 1269-1310 [20] Choi W, Kim S, Lee K A. Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian. J Funct Anal, 2014, 266: 6531-6598 [21] Cherif M A, El Arwadi T, Emamirad H, Sac-épée J M. Dirichlet-to-Neumann semigroup acts as a magnifying glass. Semigroup Forum,2014, 88(3): 753-767 [22] Daners D. Non-positivity of the semigroup generated by the Dirichlet-to-Neumann operator. Positivity, 2014, 18: 235-256 [23] Du S Z. On partial regularity of the borderline solution of the semilinear parabolic equation with critical growth. Adv Differential Equations, 2013, 18(1/2): 147-177 [24] Escher J. Nonlinear elliptic systems with dynamic boundary conditions. Math Z, 1992, 210: 413-439 [25] Fabes E B, Kenig C E, Serapioni R P. The local regularity of solutions of degenerate elliptic equations. Comm Partial Differential Equations, 1982, 7(1): 77-116 [26] Fang F, Tan Z. Heat flow for Dirichlet-to-Neumann operator with critical growth. Adv Math, 2018, 328: 217-247 [27] Fila M, Ishige K, Kawakami T. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Comm Pure Appl Math, 2012, 11(3): 1285-1301 [28] Fila M, Quittner P. Global solutions of the Laplace equation with a nonlinear dynamical boundary condition. Math Methods Appl Sci, 1997, 20: 1325-1333 [29] Fino A, Karch G. Decay of mass for nonlinear equations with fractional Laplacian. Monatshefte fÜr Mathmatik,2010, 160(4): 375-384 [30] Fujita H. On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$. J Fac Sci Univ Tokyo, 1966, 13: 109-124 [31] Giga Y. A bound for global solutions of semilinear heat equations. Comm Math Phys, 1986, 103: 415-421 [32] Guedda M, Kirane M. A note on nonexistence of global solutions to a nonlinear integral equation. Bull Belg Math Soc Simon Stevin, 1999, 6(4): 491-497 [33] Hintermann T. Evolution equation with dynamic boundary conditions. Proc Roy Soc Edinburgh Sect A, 1989, 135: 43-60 [34] Ishii H. Asymptotic stability and blowing up of solutions of some nonlinear equations. J Differential Equations, 1977, 26(2): 291-319 [35] Kirane M. Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type. Hokkaido Math J, 1992, 21: 221-229 [36] Koleva M. On the computation of blow-up solutions of elliptic equations with semilinear dynamical boundary conditions. Lect Notes Comput Sci, 2004, 2907: 473-480 [37] Koleva M, Vulkov L. Blow-up of continuous and semidiscrete solutions to elliptic equations with semilinear dynamical boundary conditions of parabolic type. J Comput Appl Math, 2007, 202: 414-434 [38] Ladyenskaja O A, Solonnikov V A, Ural'ceva N N. Linear and Quasilinear Equations of Parabolic Type. Providence RI: American Mathematical Society, 1968 [39] Leseduarte M C, Quintanilla R. Phragmén-Lindelöf alternative for the Laplace equation with dynamic boundary conditions. J Appl Anal Comput,2017, 7(4): 1323-1335 [40] Lions J L.Quelques Méthodes de Résolutions des Problémes aux Limites Non Linéaires (French). Paris: Dunod, 1969: 134-140 [41] Meyries M.Maximal Regularity in Weighted Spaces, Nonlinear Boundary Conditions, and Global Attractors[D]. Karlsruhe: Karlsruher Institut fÜr Technologie, 2001 [42] Musso M, Sire Y, Wei J, Zhou Y. Infinite time blow-up for the fractional heat equation with critical exponent. Math Ann, 2019, 375(1/2): 361-424 [43] Ni W M, Sacks P E, Tavantzis J. On the asymptotic behavior of solutions of certain quasilinear equations of parabolic type. J Differential Equations, 1984, 54: 97-120 [44] Payne L E, Sattinger D H. Saddle points and instability of nonlinear hyperbolic equations. Israel J Math, 1975, 22(3/4): 273-303 [45] Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367: 67-102 [46] Sugitani S. On nonexistence of global solutions for some nonlinear integral equations. Osaka J Math, 1975, 12: 45-51 [47] Tan J G. Positive solutions for non local elliptic problems. Discrete Contin Dyn Syst, 2013, 33(2): 837-859 [48] Tan Z. Global solution and blow-up of semilinear heat equation with critical Sobolev exponent. Comm Partial Differential Equations, 2001, 26: 717-741 [49] Touzani R, Rappaz J.Mathematical Models for Eddy Currents and Magnetostatics. Heidelberg: Springer, 2014 [50] Uhlmann G. Topical review: electrical impedance tomography and Calderón's problem. Inverse Problems,2009, 25: 123011 [51] Vitillaro E. On the Laplace equation with non-linear dynamical boundary conditions. Proc London Math Soc, 2006 93(2): 418-446 [52] Warma M. On a fractional (s, p)-Dirichlet-to-Neumann operator on bounded Lipschitz domains. J Ellipt Parab Equ, 2018, 4(8): 223-269 [53] Weissler F B. Local existence and nonexistence for semilinear parabolic equation in $L^p$. Indiana Uni Math J, 1980, 29(1): 79-102 [54] Yin Z. Global existence for elliptic equations with dynamic boundary conditions. Arch Math, 2003, 81(5): 567-574 [55] Zhang T T, Jang G Y, Oh T I, et al. Source consistency electrical impedance tomography. SIAM J Appl Math, 2020, 80(1): 499-520 [56] Zhou L, Harrach B, Seo J K. Monotonicity-based electrical impedance tomography for lung imaging. Inverse Problem, 2018, 34(4): 045005 |
|