Acta mathematica scientia,Series B ›› 2013, Vol. 33 ›› Issue (4): 1099-1112.doi: 10.1016/S0252-9602(13)60066-1

• Articles • Previous Articles     Next Articles

p-LAPLACE EQUATIONS WITH MULTIPLE CRITICAL EXPONENTS AND SINGULAR CYLINDRICAL POTENTIAL

 SUN Xiao-Mei   

  1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
    College of Science, Huazhong Agricultural University, Wuhan 430070, China
  • Received:2012-04-19 Revised:2012-06-04 Online:2013-07-20 Published:2013-07-20
  • Supported by:

    Supported by the National Science Foundation of China (11071245 and 11101418).

Abstract:

In this paper, we deal with the following problem:
{−Δpu − λ|y|p|u|p−2u = |y|s|u|p*(s)−2u + |u|p*−2u in RN, y ≠ 0,
u ≥ 0,
where u(x) = u(y, z) : Rm × RNm −→ R, N ≥ 3, 2 < m < N, 1 < p < m, λ <( (mp)/p )p and 0 < s < p, p*(s) = p(Ns)/Np , p* = pN/Np . By variational method, we prove the existence of a nontrivial weak solution when 0 < λ <( (mp/ p ))p and the existence of a cylindrical weak solution when λ < 0.

Key words: p-Laplace equation, cylindrical potential, critical exponents

CLC Number: 

  • 35J20
Trendmd