Acta mathematica scientia,Series B ›› 2023, Vol. 43 ›› Issue (2): 942-958.doi: 10.1007/s10473-023-0225-1
Previous Articles Next Articles
Boling Guo1, Yamin Xiao2,†
Received:
2022-06-08
Revised:
2022-08-10
Online:
2023-03-25
Published:
2023-04-12
Contact:
†Yamin Xiao, E-mail: About author:
Boling Guo, E-mail: gbl@iapcm.ac.cn
Boling Guo, Yamin Xiao. THE EXISTENCE OF WEAK SOLUTIONS AND PROPAGATION REGULARITY FOR A GENERALIZED KDV SYSTEM*[J].Acta mathematica scientia,Series B, 2023, 43(2): 942-958.
[1] Bassanini P, Elcrat A R.Elliptic Partial Differential Equations of Second Order. New York: Springer, 1997 [2] De Bouard A.Stability and instability of some nonlinear dispersive solitary waves in higher dimension. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1996, 126(1): 89-112 [3] Bui A T.Initial boundary value problems for the Korteweg-de Vries equation. J Differential Equations, 1977, 25(3): 288-309 [4] Côte R, Muñoz C, Pilod D, Simpson G. Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons. Arch Ration Mech Anal, 2016, 220(2): 639-710 [5] Faminskii A V.The Cauchy problem for the Zakharov-Kuznetsov equation. Differ Equa, 1995, 31(6): 1070-1081 [6] Guo B L, Qin G Q.On the propagation of regularity and decay of solutions to the Benjamin equation. J Math Phys, 2018, 59(7): 071505 [7] Isaza P, Linares F, Ponce G.On the propagation of regularity and decay of solutions to the k-generalized Korteweg-de Vries equation. Comm Partial Differential Equations, 2015, 40(7): 1336-1364 [8] Isaza P, Linares F, Ponce G.On the progation of regularities in solutions of the Benjamin-Ono equation. J Funct Anal, 2016, 270(3): 976-1000 [9] Kenig C E, Linares F, Ponce G, Vega L.On the regularity of solutions to the k-generalized Korteweg-de Vries equation. Proc Amer Math Soc, 2018, 146(9): 3759-3766 [10] Kenig C E, Ponce G, Vega L.Well-posedness of the initial value problem for the Korteweg-de Vries equation. SIAM J Math Anal, 1991, 4(2): 323-347 [11] Kenig C E, Ponce G, Vega L.Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm Pure Appl Math, 1993, 46(4): 527-620 [12] Linares F, Ponce G.On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Comm Pure Appl Anal, 2018, 17(4): 1561-1572 [13] Linares F, Ponce G, Smith D L.On the regularity of solutions to a class of nonlinear dispersive equations. Math Ann, 2017, 369(1): 797-837 [14] Linares F, Pastor A.Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation. SIAM J Math Anal, 2009, 41(4): 1323-1339 [15] Linares F, Pastor A.The cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete Contin Dyn Syst, 2009, 24(2): 547-565 [16] Mendez A J.On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation. J Differential Equations, 2020, 269(11): 9051-9089 [17] Mendez A J.On the propagation of regularity for solutions of the dispersion generalized Benjamin-Ono equation. Anal PDE, 2020, 13(8): 2399-2440 [18] Ribaud F, Vento S.Well-posedness results for the 3D Zakharov-Kuznetsov equation. SIAM J Math Anal, 2012, 44: 2289-2304 [19] Segata J I, Smith D L.Propagation of regularity and persistence of decay for fifth order dispersive models. J Dyn Diff Equat, 2017, 29(2): 701-736 [20] Zakharov V E, Kuznetsov E A.Three-dimensional solitons. Sov Phys JETP, 1974, 39(2): 285-286 |
[1] | Mingxuan Zhu, Zaihong Jiang. THE CAUCHY PROBLEM FOR THE CAMASSA-HOLM-NOVIKOV EQUATION* [J]. Acta mathematica scientia,Series B, 2023, 43(2): 736-750. |
[2] | Quansen Jiu, Lin Ma. GLOBAL WEAK SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES-LANDAU-LIFSHITZ-MAXWELL EQUATIONS FOR QUANTUM FLUIDS IN DIMENSION THREE* [J]. Acta mathematica scientia,Series B, 2023, 43(1): 25-42. |
[3] | Wenjun WANG, Zhen CHENG. LARGE TIME BEHAVIOR OF GLOBAL STRONG SOLUTIONS TO A TWO-PHASE MODEL WITH A MAGNETIC FIELD [J]. Acta mathematica scientia,Series B, 2022, 42(5): 1921-1946. |
[4] | Ruiying WEI, Yin LI, Zheng-an YAO. THE GLOBAL EXISTENCE AND A DECAY ESTIMATE OF SOLUTIONS TO THE PHAN-THEIN-TANNER MODEL [J]. Acta mathematica scientia,Series B, 2022, 42(3): 1058-1080. |
[5] | Jianjun HUANG, Zhenglu JIANG. GLOBAL EXISTENCE FOR THE RELATIVISTIC ENSKOG EQUATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(5): 1335-1351. |
[6] | Lamia DJEBARA, Salem ABDELMALEK, Samir BENDOUKHA. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME COUPLED SYSTEMS VIA A LYAPUNOV FUNCTIONAL [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1538-1550. |
[7] | Zhensheng GAO, Yan LIANG, Zhong TAN. A GLOBAL EXISTENCE RESULT FOR KORTEWEG SYSTEM IN THE CRITICAL LP FRAMEWORK [J]. Acta mathematica scientia,Series B, 2019, 39(6): 1639-1660. |
[8] | Hua CHEN, Huiyang XU. GLOBAL EXISTENCE, EXPONENTIAL DECAY AND BLOW-UP IN FINITE TIME FOR A CLASS OF FINITELY DEGENERATE SEMILINEAR PARABOLIC EQUATIONS [J]. Acta mathematica scientia,Series B, 2019, 39(5): 1290-1308. |
[9] | Yuzhu WANG, Naiwen TIAN. ON THE CAUCHY PROBLEM FOR IMBQ SYSTEM ARISING FROM DNA [J]. Acta mathematica scientia,Series B, 2019, 39(4): 1136-1148. |
[10] | Yingshu ZHANG, Lang LI, Shaomei FANG. GLOBAL EXISTENCE AND POINTWISE ESTIMATES OF SOLUTIONS TO GENERALIZED KURAMOTO-SIVASHINSKY SYSTEM IN MULTI-DIMENSIONS [J]. Acta mathematica scientia,Series B, 2019, 39(1): 180-194. |
[11] | Dexing KONG, Qi LIU. GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION [J]. Acta mathematica scientia,Series B, 2018, 38(3): 745-755. |
[12] | Jing ZHANG, Yongqian ZHANG. INITIAL-BOUNDARY PROBLEM FOR THE 1-D EULER-BOLTZMANN EQUATIONS IN RADIATION HYDRODYNAMICS [J]. Acta mathematica scientia,Series B, 2018, 38(1): 34-56. |
[13] | Yingbo LIU, Ingo WITT. SMALL DATA SOLUTIONS OF 2-D QUASILINEAR WAVE EQUATIONS UNDER NULL CONDITIONS [J]. Acta mathematica scientia,Series B, 2018, 38(1): 125-150. |
[14] | Fei HOU. ON THE GLOBAL EXISTENCE OF SMOOTH SOLUTIONS TO THE MULTI-DIMENSIONAL COMPRESSIBLE EULER EQUATIONS WITH TIME-DEPENDING DAMPING IN HALF SPACE [J]. Acta mathematica scientia,Series B, 2017, 37(4): 949-964. |
[15] | Anyin XIA, Mingshu FAN, Shan LI. BLOW-UP AND LIFE SPAN ESTIMATES FOR A CLASS OF NONLINEAR DEGENERATE PARABOLIC SYSTEM WITH TIME-DEPENDENT COEFFICIENTS [J]. Acta mathematica scientia,Series B, 2017, 37(4): 974-984. |
|