[1] Shao Z Q, Hong J X. The eigenvalue problem for the Laplacian equations. Acta Math Sci, 2007, 27B(2):329-337 [2] Huang G Y, Chen W Y. Universal bounds for eigenvalues of Laplacian operator of any order. Acta Math Sci, 2010, 30B(3):939-948 [3] Hu Y X, Xu H W. An eigenvalue pinching theorem for compact hypersurfaces in a sphere. J Geom Anal, 2017, 27(3):2472-2489 [4] Hu Y X, Xu H W, Zhao E T. First eigenvalue pinching for Euclidean hypersurfaces via k-th mean curvatures. Ann Global Anal Geom, 2015, 48(1):23-35 [5] Li P, Yau S T. On the Schödinger equation and the eigenvalue problem. Comm Math Phys, 1983, 88(3):309-318 [6] Stewarson K, Waechter R T. On hearing the shape of a drum:further results. Proc Camb Philol Soc, 1971, 69(2):353-369 [7] Payne L E, Pölya G, Weinberger H F. Sur le quotient de deux fréquence propers consécutives. C R Acad Sci Paris, 1955, 241:917-919 [8] Hile G N, Potter M H. Inequalities for eigenvalues of the Laplacian. Indiana Univ Math J, 1980, 29(4):255-306 [9] Yang H C. An estimate of the difference between consecutive eigenvalues. preprint. 1991, IC/91/60 of the Intl Centre for Theoretical Physics [10] Cheng Q M, Yang H C. Bounds on eigenvaluesof Dirichlet Laplacian. Math Ann, 2007, 337(1):159-175 |