[1] Bressan A. Hyperbolic Systems of Conservation Laws. London:Oxford University Press, 2000 [2] Chen G Q, Li D N, Tan D C. Structure of Riemann solution for 2-dimensional scalar conservation laws. J Differ Equ, 1996, 127(1):124-147 [3] Conway E, Smoller J A. Global solutions of the Cauchy problem for quasi-linear first-order equations in several space variables. Comm Pure Appl Math, 1966, 19:95-105 [4] Guckenheimer J. Shocks and rarefactions in two space Dimensions. Arch Rational Mech Anal, 1975, 59:281-291 [5] Hoff D. Locally Lipschitz of a single conservation law in several space viariable. J Differ Equ, 1981, 42(2):215-233 [6] Hoff D. The sharp from of Oleinic's entropy condition in several space variables. Trans Amer Math Soc, 1983, 276(2):707-714 [7] Kroner D, Rokyta M. Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J Numer Anal, 1994, 31(2):324-343 [8] Kruzkov S N. Generalized solutions of the Cauchy problem in the large for nonlinear equations of first order. Soviet Math Dokl, 1969, 10:785-788 [9] Lax Peter D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. New York:Society for Industrial and Applied Mathematics, 1973 [10] Lindquist W B. The scalar Riemann problem in two spatial dimensions:piecewise somoothness of solutions and its breakdown. SIAM J Math Anal, 1986, 17:1178-1197 [11] Smoller J A. Shock Wave and Reaction-Diffusion Equation, 2nd Ed. New York:Springer-Verlag, 1999 [12] Szepessy A. Convergence of a shock capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions. Math Comp, 1989, 188(53):527-545 [13] Vol'pert A I. The spaces BV and quasilinera equations. Math USSR-Sb, 1967, 2:225-267 [14] Wagner D. The Riemann problem in two space dimensions for a single conservation law. SIAM J Math Anal, 1982, 3:534-559 [15] Xu J C, Ying L A. Convergence of an explicit upwind finite element method to multi-dimensional conservation laws. J Comput Math, 2001, 19(1):87-100 [16] Yang X Z. Multi-dimensional Riemann problem of scalar conservation law. Acta Math Sci, 1999, 19(2):190-200 [17] Yang X Z. The singular structure of non-selfsimilar global solutions of n dimensional Burgers equation. Acta Math Appl Sin, Engl Ser, 2005, 21(3):505-518 [18] Yang X Z, Wei T. New structures for non-selfsimilar solutions of muti-dimensional conservation laws. Acta Math Sci, 2009, 29B(5):1182-1202 [19] Zhang P, Zhang T. Generalized characteristic analysis and Guckenheimer structure. J Differ Equ, 1999, 152(2):409-430 [20] Zhang T, Chen G Q. Some fundamental concepts for system of two special dimensional conservation laws. Acta Math Sci, 1986, 6:463-474 [21] Zhang T, Zheng Y X. Two-dimensional Riemann problem for a single conservation law. Trans Amer Math Soc, 1989, 312(2):589-619 [22] Zhang T, Zheng Y X. Conjecture on structure of solutions of Riemann problem for two-dimensional gas dynamics systems. SIAM J Math Anal, 1990, 21:593-630 [23] Zheng Y X. Two-Dimensional Riemann Problems. Boston:Birkhäuser, 86-107, 2001 |