Acta mathematica scientia,Series B ›› 2018, Vol. 38 ›› Issue (1): 220-236.doi: 10.1016/S0252-9602(17)30128-5
• Articles • Previous Articles Next Articles
Kuo-Shou CHIU
Received:
2016-12-04
Revised:
2017-01-08
Online:
2018-02-25
Published:
2018-02-25
Supported by:
This research was in part supported by FGI 05-16 DIUMCE.
Kuo-Shou CHIU. ASYMPTOTIC EQUIVALENCE OF ALTERNATELY ADVANCED AND DELAYED DIFFERENTIAL SYSTEMS WITH PIECEWISE CONSTANT GENERALIZED ARGUMENTS[J].Acta mathematica scientia,Series B, 2018, 38(1): 220-236.
[1] Akhmet M U. Integral manifolds of differential equations with piecewise constant argument of generalized type. Nonlinear Anal TMA, 2007, 66:367-383 [2] Akhmet M U. Asymptotic behavior of solutions of differential equations with piecewise constant arguments. Appl Math Lett, 2008, 21:951-956 [3] Akhmet M U, Tleubergenova M, Zafer A. Asymptotic equivalence of differential equations and asymptotically almost periodic solutions. Nonlinear Anal TMA, 2007, 67:1870-1877 [4] Choi S K, Goo Y H, Koo N J. Asymptotic equivalence between two linear differential systems. Ann Differ Equ, 1997, 13:44-52 [5] Coppel W A. Stability and Asymptotic Behavior of Differential Equations. Boston:Heath, 1965 [6] Chiu K S, Pinto M. Periodic solutions of differential equations with a general piecewise constant argument and applications. Electron J Qual Theory Differ, 2010, 46:1-19 [7] Chiu K S. Stability of oscillatory solutions of differential equations with a general piecewise constant argument. Electron J Qual Theory Differ, 2011, 88:1-15 [8] Chiu K S, Pinto M. Variation of parameters formula and Gronwall inequality for differential equations with a general piecewise constant argument. Acta Math Appl Sin Engl Ser, 2011, 27(4):561-568 [9] Chiu K S, Pinto M. Oscillatory and periodic solutions in alternately advanced and delayed differential equations. Carpathian J Math, 2013, 29(2):149-158 [10] Chiu K S, Pinto M, Jeng J C. Existence and global convergence of periodic solutions in recurrent neural network models with a general piecewise alternately advanced and retarded argument. Acta Appl Math, 2014, 133:133-152 [11] Chiu K S. Periodic solutions for nonlinear integro-differential systems with piecewise constant argument. The Scientific World Journal, 2014, Article ID:514854 [12] Chiu K S, Jeng J C. Stability of oscillatory solutions of differential equations with general piecewise constant arguments of mixed type. Math Nachr, 2015, 288:1085-1097 [13] Chiu K S. On generalized impulsive piecewise constant delay differential equations. Sci China Math, 2015, 58:1981-2002 [14] Haddock J R, Krisztin T, Wu J H. Asymptotic equivalence of neutral and infinite retarded differential equations. Nonlinear Anal, 1990, 14:369-377 [15] Hartman P. Ordinary Differential Equations. New York:Wiley, 1964 [16] Levinson N. The asymptotic nature of solutions of linear systems of differential equations. Duke Math J, 1948, 15:111-126 [17] Nemytskii V V, Stepanov V V. Qualitative Theory of Differential Equations. Princeton, New Jersey:Princeton University Press, 1966 [18] Pinto M. Cauchy and Green matrices type and stability in alternately advanced and delayed differential systems. J Differ Equ Appl, 2011, 17(2):235-254 [19] Pinto M. Asymptotic equivalence of nonlinear and quasilinear differential equations with piecewise constant argument. Math Comp Model, 2009, 49:1750-1758 [20] Ráb M. Über lineare perturbationen eines systems von linearen differentialgleichungen. Czech Math J, 1958, 83:222-229 [21] Ráb M. Note sur les formules asymptotiques pour les solutions d'un systme d'équations différentielles linéaires. Czech Math J, 1966, 91:127-129 [22] Saito S. Asymptotic equivalence of quasilinear ordinary differential systems. Math Japan, 1992, 37:503-513 [23] Svec M. Asymptotic relationship between solutions of two systems of differential equations. Czechoslovak Math J, 1974, 29:44-58 [24] Zafer A. On asymptotic equivalence of linear and quasilinear difference equations. Appl Anal, 2005, 84:899-908 |
[1] | Lin HE, Yongkai LIAO, Tao WANG, Huijiang ZHAO. ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY [J]. Acta mathematica scientia,Series B, 2018, 38(5): 1515-1548. |
[2] | Mahmood POURGHOLAMHOSSEIN, Mohammad ROUZBEHANI, Massoud AMINI. CHAIN CONDITIONS FOR C*-ALGEBRAS COMING FROM HILBERT C*-MODULES [J]. Acta mathematica scientia,Series B, 2018, 38(4): 1163-1173. |
[3] | Jianlin ZHANG, Yuming QIN. EXACT SOLUTIONS FOR THE CAUCHY PROBLEM TO THE 3D SPHERICALLY SYMMETRIC INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J]. Acta mathematica scientia,Series B, 2018, 38(3): 778-790. |
[4] | Xing LI, Yan YONG. LARGE TIME BEHAVIOR OF SOLUTIONS TO 1-DIMENSIONAL BIPOLAR QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTORS [J]. Acta mathematica scientia,Series B, 2017, 37(3): 806-835. |
[5] | Yali DU, Junjie MIAO, Min WU. LEVEL SETS AND EQUIVALENCES OF MORAN-TYPE SETS [J]. Acta mathematica scientia,Series B, 2016, 36(5): 1343-1357. |
[6] | Nguyen Tien DUNG. ASYMPTOTIC BEHAVIOR OF LINEAR ADVANCED DIFFERENTIAL EQUATIONS [J]. Acta mathematica scientia,Series B, 2015, 35(3): 610-618. |
[7] | Zagharide Zine EL ABIDINE. COMBINED EFFECTS IN A SEMILINEAR POLYHARMONIC PROBLEM IN THE UNIT BALL [J]. Acta mathematica scientia,Series B, 2014, 34(5): 1404-1416. |
[8] | ZHANG Ying-Hui, WU Guo-Chun. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR THE 3D COMPRESSIBLE NON–ISENTROPIC EULER EQUATIONS WITH DAMPING [J]. Acta mathematica scientia,Series B, 2014, 34(2): 424-434. |
[9] | CHEN Gui-Qang, XIAO Chang-Guo, ZHANG Yong-Qian. EXISTENCE OF ENTROPY SOLUTIONS TO TWO-DIMENSIONAL STEADY EXOTHERMICALLY REACTING EULER EQUATIONS [J]. Acta mathematica scientia,Series B, 2014, 34(1): 1-38. |
[10] | YANG Hu, XUE Kai. RUIN PROBABILITY IN A SEMI-MARKOV RISK MODEL WITH CONSTANT INTEREST FORCE AND HEAVY-TAILED CLAIMS [J]. Acta mathematica scientia,Series B, 2013, 33(4): 998-1006. |
[11] | XIA Li, LI Jing-Na, YAO Zheng-An. EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A SINGULAR PARABOLIC EQUATION [J]. Acta mathematica scientia,Series B, 2012, 32(5): 1875-1882. |
[12] | LI Fang, SUN Long-Gang. INVARIANTS UNDER STABLE EQUIVALENCES OF MORITA TYPE [J]. Acta mathematica scientia,Series B, 2012, 32(2): 605-618. |
[13] | YU Hai-Bo, SHEN Wen-Huai. ON REDUCIBILITY OF THE SELF-HOMOTOPY EQUIVALENCES OF WEDGE SPACES [J]. Acta mathematica scientia,Series B, 2012, 32(2): 813-817. |
[14] | WU Shun-Tang. GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J]. Acta mathematica scientia,Series B, 2011, 31(4): 1436-1448. |
[15] | YANG Fen, ZHANG Dan-Dan. SEPARATION PROPERTY OF POSITIVE RADIAL SOLUTIONS FOR A GENERAL SEMILINEAR ELLIPTIC EQUATION [J]. Acta mathematica scientia,Series B, 2011, 31(1): 181-193. |
|