[1] Atkinson F V, Peletier L A. Elliptic equations with near critical growth. J Diff Equ, 1987, 70: 349-365
[2] Bahri A. Critical Point at Infinity in Some Variational Problems. Pitman Res Notes Math, Ser 182. Harlow: Longman Sci Tech, 1989
[3] Bahri A, Coron J M. On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of topology of the domain. Comm Pure Appl Math, 1988, 41: 255-294
[4] Bahri A, Li Y Y, Rey O. On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc Var Partial Differ Equ, 1995, 3: 67-94
[5] Ben Ayed M, Hammami M. On a fourth order elliptic equation with critical nonlinearity in dimension six. Nonlinear Anal, 2006, 64(5): 924-957
[6] Ben Ayed M, El Mehdi K. The Paneitz Curvature problem on lower dimentional spheres. Ann Global Anal Geom, 2007, 31(1): 1-36
[7] Ben Ayed M, El Mehdi K, Grossi M, Rey O. A nonexistence result of single peaked solutions to a super- critical nonlinear problem. Comm Contemp Math, 2003, 5: 179-195
[8] Ben Ayed M, Chtioui H, Hammami M. A Morse lemma at infinity for Yamabe type problems on domains. Ann Inst Henri Poincaré (Analyse non-linéaire), 2003, 20(4): 543-577
[9] Ben Ayed M, El Khalil M, Hammami M. Some existence results for a Paneits type problem via the theory of critical points at infinity. J Math Pures Appl, 2005, 84: 247-278
[10] Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36: 437-477
[11] Brezis H, Peletier L A. Asymptotics for elliptic equations involving the critical growth//Colombani F, Modica L, Spagnolo S, eds. Partial Differential Equations and the Calculus of Variations. Birkhauser, 1989: 149-192
[12] Chabrowski J, Yan S. Concentration of solutions for a nonlinear elliptic problem with nearly critical expo- nent. Top Methods Nonl Anal, 1999, 13: 199-233
[13] Chang Sun-Yung A. On Paneitz operator-a fourth order differential operator in conformal geometry//Christ M, Kenig C, Sadorsky C, eds. Harmonic Analysis and Partial Differential Equations; Essays in Honor of Alberto P. Calderon. Chicago Lectures in Mathematics, 1999: 127-150
[14] Chow S N, Hale J K. Methods of bifurcation theory. Grundl Math Wiss, Vol 251. Berlin: Springer, 1982
[15] Del Pino M, Felmer P, Musso M. Two bubles solutions in the supercritical Bahri-Coron's problem. Calc Var Partial Differ Equ, 2003, 16: 113-145
[16] Del Pino M, Felmer P, Musso M. Multi-peak solutions for supercritical elliptic problems in domains with small holes. J Differ Equ, 2002, 182: 511-540
[17] Djadli Z, Hebey E, Ledoux M. Paneitz type operators and applications. Duke Math J Partial Differ Equ, 2000, 104: 129-169
[18] Ebobisse F, Ahmedou M O. On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent. Nonlinear Anal TMA, 2003, 52: 1535-1552
[19] Gazzola F, Grunau H C, Squassina M. Existence and nonexistence results for critical growth biharmonic elliptic equations. Calc Var Partial Differ Equ, 2003, 18: 117-143
[20] Hammami M. Concentration Phenomena for Fourth order elliptic equations with critical exponent. Elec J Differ Equ, 2004, 2004: 1-22
[21] Han Z C. Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann Inst Henri Poincaré (Analyse non-linéaire), 1991, 8: 159-174
[22] Lin C S. Classification of solutions of a conformally invariant fourth order eqution in Rn. Comm Math Helv, 1998, 73: 206-231
[23] Mehdi K, Selmi A. Concentration and multiplicity of solutions for Fourth order equation with critical nonlinearity. Nonlinear Anal TMA, 2006, 64: 417-439
[24] Melo J L F, Santos E M D. Positive solutions to a fourth-order elliptic problem by the Lusternik- Schnirelmann category. J Math Anal Appl, 2014, 420: 532-550
[25] Micheletti AM, Pistoia A. Existence of blowing-up solutions for a slightly subcritical or slightly supercritical nonlinear elliptic equation on Rn. Nonlinear Anal TMA, 2003, 52: 173-195
[26] Musso M, Pistoia A. Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent. Indiana Univ Math J, 2002, 51: 541-579
[27] Musso M, Pistoia A. Dowble Blow-up solutions for a Brezis- Nirenberg type problem. Comm Contemp Math, 2003, 5: 775-802
[28] Rey O. Bifurcation from infinity in a nonlinear elliptic equation involving the limiting Sobolev exponent. Duke Math J, 1990, 60: 815-861
[29] Rey O. The role of Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent. J Funct Anal, 1990, 89: 1-52
[30] Rey O. Proof of two conjectures of H. Brezis and L.A. Peletier. Manuscripta Math, 1989, 65: 19-37
[31] Rey O. Blow-up points of solutions to elliptic equations with limiting nonlinearity. Differ Integral Equ, 1991, 4: 1155-1167 |