[1] Assem I, Simson D, Skowronski A. Elements of the representation theory of associative algebra. Vol 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge: Cambridge University Press, 2006
[2] Dugas A S, Martinez-Villa R. A note on stable equivalence of Morita type. J Pure Appl Algebra, 2007, 208(2): 421–433
[3] Happel D. Triangulated categories in the representation theory of finite-dimensional algebras. London Math Soc Lecture Note Series, Vol 119, 1988
[4] Happel D, Reiten I, Smal´o S O. Tilting in Abelian categories and quasitilted algebras. Mem Amer Math Soc, Vol 575, 1996
[5] Kerner O. Minimal approximations, orbital elementary modules, and orbit algebras of regular modules. J Algebra, 1999, 217: 528–554
[6] Krause H. Representation type and stable equivalence of Morita type for finite-dimensional algebras. Math Z, 1998, 229: 601–606
[7] Lenzing H. Wild Canonical Alebras and Rings of Automorphic Forms//Dlab V, Scott L L. Finite Di-mensional Algebras and Related Topics. NATO ASI Series C Vol 424. Kluwer Academic Press, 1992: 191–212
[8] Liu Y M. On stable equivalences of Morita type for finite-dimensional algebras. Proc Amer Math Soc, 2003, 131: 2657–2662
[9] Liu Y M, Xi C C. Construction of stable equivalences of Morita type for finite-dimensional algebras I. Trans Amer Math Soc, 2005, 358: 2537-2560
[10] Liu Y M, Xi C C. Construction of stable equivalences of Morita type for finite-dimensional algebras II. Math Z, 2005, 251: 21–39
[11] Liu Y M, Xi C C. Construction of stable equivalences of Morita type for finite-dimensional algebras III. J London Math Soc, 2007, 76: 567–585
[12] Martinez-Villa R. Property that are left invariant under stable equivalence. Comm in Algebra, 1990, 18: 4141–4169
[13] Pogorzaly Z. Invariance of Hochschild cohomology algebras under stable equivalences of Morita type. J Math Soc Japan, 2001, 53: 913–918
[14] Pogorzaly Z. Left-right projective bimodules and stable equivalences of Morita type. Colloq Math, 2001, 88: 243–255
[15] Pogorzaly Z. A new invariant of stable equivalence of Morita type. Proc Amer Math Soc, 2002, 131: 343–349
[16] Rickard J. Derived equivalences as derived functors. J London Math Soc, 1991, 43: 37–48
[17] Rotman J J. An Introduction to Homological Algebra. New York: Academic press, 1979
[18] Xi C C. Stable equivalences of adjoint type. Forum Math, 2008, 20: 81–97 |