Acta mathematica scientia,Series B ›› 2010, Vol. 30 ›› Issue (4): 1291-1300.doi: 10.1016/S0252-9602(10)60125-7

• Articles • Previous Articles     Next Articles

ON A PROBLEM IN COMPLEX OSCILLATION THEORY OF PERIODIC HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

 XIAO Li-Peng1, CHEN Zong-Xuan2   

  1. 1. Institute of Mathematics and Informations, Jiangxi Normal |University, Nanchang 330022, China|2. School of |Mathematical |Science, South China Normal University, Guangzhou 510631, China
  • Received:2007-12-30 Revised:2008-10-20 Online:2010-07-20 Published:2010-07-20
  • Supported by:

    This work is supported by  the National Natural Foundation of China (10871076) and the Startup Foundation for Doctors of Jiangxi Normal University (2614)

Abstract:

In this article, the zeros of solutions of differential equation

f(k)}(z)+A(z)f(z)=0,                                         (*)
 are studied, where k>2, A(z)=B(ez), B(ς)=g1(1/ς)+g2(ς), gand g2 being  entire functions with g2 transcendental and ο(g2) not equal to a positive integer or infinity. It is shown that any linearly independent solutions f1, f2, …, fk of Eq.(*) satisfy λe(f1… fk) ≥ο(g2) under the condition that fj(z) and fj(z+2πi )(j =1, …, k) are linearly dependent.

Key words: Differential equation, periodic, linearly dependent, complex oscillation

CLC Number: 

  • 30D35
Trendmd