Acta mathematica scientia,Series B
• Articles • Previous Articles Next Articles
Mo Huixia; Lu Shanzhen
Received:
Revised:
Online:
Published:
Contact:
Abstract:
Let $\vec{b}=(b_{1},\cdots ,b_{m})$ be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows: $$\mu_{\Omega}^{\vec{b}}(f)(x)=\Bigl(\int_{0}^{\infty} |F_{\Omega,t}^{\vec{b}}(f)(x)|^{2}\frac{{\rm d}t}{t}\Bigr)^{1/2},$$ where $$F_{\Omega,t}^{\vec{b}}(f)(x)=\frac{1}{t}\int_{|x-y|\leq t} \frac{\Omega(x-y)}{|x-y|^{n-1}}\prod\limits_{j=1}^{m}(b_{j}(x)-b_{j}(y))f(y){\rm d}y.$$ When $b_{j}\in\dot{\Lambda}_{\beta_{j}}, 1\leq j\leq m,$ $0<\beta_{j}<1, \sum\limits_{j=1}^{m}\beta_{j}=\betais homogeneous of degree zero and satisfies the cancelation condition, we prove that $\mu_{\Omega}^{\vec{b}}$ is bounded from $L^{p}({\Bbb R}^{n})$ to $L^{s}({\Bbb R}^{n}),$ where $1Moreover, if $\Omega$ also satisfies some Lq-Dini condition, then $\mu_{\Omega}^{\vec{b}}$ is bounded from $L^{p}({\Bbb R}^{n})$ to $\dot{F}^{\beta,\infty}_{p}({\Bbb R}^{n})$ and on certain Hardy spaces. The article extends some known results.
Key words: Generalized higher commutator of Marcinkiewicz integral, Hardy space, Lipschitz space
CLC Number:
Mo Huixia; Lu Shanzhen. BOUNDEDNESS OF GENERALIZED HIGHER COMMUTATORS OF MARCINKIEWICZ INTEGRALS[J].Acta mathematica scientia,Series B, 2007, 27(4): 852-866.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbB/EN/10.1016/S0252-9602(07)60083-6
http://121.43.60.238/sxwlxbB/EN/Y2007/V27/I4/852
Cited