Acta mathematica scientia,Series B

• Articles • Previous Articles     Next Articles

THE EIGENVALUE PROBLEM FOR THE LAPLACIAN EQUATIONS

Shao Zhiqiang; Hong Jiaxing   

  1. Department of Mathematics, Fuzhou University, Fuzhou 350002, China
  • Received:2004-10-13 Revised:2005-09-27 Online:2007-04-20 Published:2007-04-20
  • Contact: Shao Zhiqiang

Abstract:

This article studies the Dirichlet eigenvalue problem for the Laplacian equations △u=-λu, $x\in \Omega$, $u=0$, $x\in\partial\Omega$, where $\Omega\subset R^{n}$ is a smooth bounded convex domain. By using the method of appropriate barrier function combined with the maximum principle, authors obtain a sharp lower bound of the difference of the first two eigenvalues for the Dirichlet eigenvalue problem. This study improves the result of S.T. Yau et al.

Key words: Dirichlet eigenvalue problem, gradient estimate, maximum principle, barrier function

CLC Number: 

  • 35P30
Trendmd