[1] Alexandre R, Morimoto Y, Ukai S, Xu C J, Yang T. Regularizing effect and local existence for non-cutoff Boltzmann equation. Arch Ration Mech Anal, 2010, 198(1): 39–123
[2] Alexandre R, Morimoto Y, Ukai S, Xu C J, Yang T. Global existence and full regularity of the Boltzmann equation without angular cutoff. Comm Math Phys, 2011, 304(2): 513–581
[3] Alexandre R, Morimoto Y, Ukai S, Xu C J, Yang T. The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. J Funct Anal, 2012, 263(3): 915–1010
[4] Cercignani C, Illner R, Pulvirenti M. The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, 106. New York: Springer-Verlag, 1994
[5] Duan R J. On the Cauchy problem for the Boltzmann equation in the whole space: global existence and uniform stability in L2ξ(HNx ). J Differential Equations, 2008, 244(12): 3204–3234
[6] Duan R J, Liu S Q. The Vlasov-Poisson-Boltzmann system without angular cutoff. Comm Math Phys, 2013, 324(1): 1–45
[7] Duan R J, Ukai S, Yang T, Zhao H J. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Comm Math Phys, 2008, 277(1): 189–236
[8] Duan R J, Yang T, Zhao H J. The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case. J Differential Equations, 2012, 252(12): 6356–6386
[9] Duan R J, Yang T, Zhao H J. The Vlasov-Poisson-Boltzmann system for soft potentials. Math Methods Models Appl Sci, 2013, 23(6): 979–1028
[10] Duan R J, Liu S Q, Yang T, Zhao H J. Stabilty of the nonrelativistic Vlasov-Maxwell-Boltzmann system for angular non-cutoff potentials. Kinetic and Related Models, 2013, 6(1): 159–204
[11] Glassey R. The Cauchy Problem in Kinetic Theory. Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 1996
[12] Guo Y. The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm Pure Appl Math, 2002, 55(9): 1104–1135
[13] Guo Y. The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53(4): 1081–1094
[14] Guo Y. The Vlasov-Poisson-Laudau system in a periodic box. J Amer Math Soc, 2012, 25: 759–812
[15] Gressman P T, Strain R M. Global classical solutions of the Boltzmann equation without angular cut-off. J Amer Math Soc, 2011, 24(3): 771–847
[16] Gressman P T, Strain R M. Sharp anisotropic estimates for the Boltzmann collision operator and its entropy
production. Adv Math, 2011, 227(6): 2349–2384
[17] Kawashima S. The Boltzmann equation and thirteen moments. Japan J Appl Math, 1990, 7(2): 301–320
[18] Liu T P, Yang T, Yu S H. Energy method for the Boltzmann equation. Physica D, 2004, 188(3/4): 178–192
[19] Pao Y P. Boltzmann collision operator with inverse-power intermolecular potentials I, II. Comm Pure Appl Math, 1974, 27: 407–428; Comm Pure Appl Math, 1974, 27: 559–581
[20] Strain R M. Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinetic and Related Models, 2012, 5(3): 583–613
[21] Sun J. The Boltzmann equation with potential force in the whole space. Math Methods Appl Sci, 2011, 34(6): 621–632
[22] Ukai S, Yang T, Zhao H J. Global solutions to the Boltzmann equation with external forces. Anal Appl, 2005, 3(2): 157–193
[23] Yang T, Yu H J. Optimal convergence rates of Landau equation with external forcing in the whole space. Acta Math Sci, 2009, 29B(4): 1035–1062
[24] Yu H J. Global classical solutions to the Boltzmann equation with external force. Commun Pure Appl Anal, 2009, 8(5): 1647–1668 |