[1] Lu Jianke. Boundary Value Problems for Analytic Functions. Singapore: World Scientific, 1993
[2] Muskhelishvili N I. Singular Integral Equations. 2nd ed. Groningen: Noordhoff, 1968
[3] Gakhov F D. Boundary Value Problems. Moscow: Nauka, 1977
[4] Delanghe R, Sommen F, Souˇcek V. Clifford Algebra and Spinor-Valued Functions: A Function Theory forthe Dirac Operator. Mathematics and its Applications 53. Dordrecht: Kluwer 1992
[5] Brackx F, Delanghe R, Sommen F. Clifford Analysis. Research Notes in Mathematics 76. Boston: Pitman(Advanced Publishing Program), 1982
[6] G¨urlebeck K, Spr¨ossig W. Quaternionic Analysis and Elliptic Boundary Value Problems. ISNM 89. Basel,Boston, Berlin: Birkha¨user Verlag, 1990
[7] G¨urlebeck K, Spr¨ossig W. Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley & SonsPubl, 1997
[8] Zhang Zhongxiang, Du Jinyuan. On certain Riemann boundary value problems and singular integral equationsin Clifford analysis. Chinese Journal of Contemporary Mathematics, 2001, 22(3): 237–244
[9] Gong Yafang, Du Jinyuan. A kind of Riemann and Hilbert boundary value problem for left monogenicfunction in Rm (m 2). Complex Variables, 2004, 49: 303–318
[10] Du Jinyuan, Xu Na, Zhang Zhongxiang. Boundary behavior of Cauchy-type integrals in Clifford analysis.Acta Math Sci, 2009, 29B(1): 210–224[11] Du Jinyuan, Xu Na. On boundary behavior of the Cauchy type integrals with values in a universal Cliffordalgebra. Adv Appl Clifford Algebra, 2011, 21(1): 49–87
[12] G¨urlebeck K. Zhang Zhongxiang. Some Riemann boundary value problems in Clifford analysis. Math Methods
Appl Sci, 2010, 33: 287–302
[13] Xu Z. On linear and non-linear Riemann-Hilbert problems for regular functions with values in Clifford
algebras. Chinese Ann Math, 1990, 11B(3): 349–358
[14] Blaya R A, Reyes J B, Pe˜na D. Jump problem and removable singularies for monogenic functions. J GeomAnal, 2007, 17(1): 1–13
[15] Iftimie V. Fonctions hypercomplexes. Bull Math Soc Sci Math R S Roumanie 9, 1965, 57: 279–332
[16] Shapiro M, Vasilievski N. Quaternionic -hyperholomorphic functions, singular integral operators withquaternionic Cauchy kernel and analogues of the Riemann boudary value problem II, Algebras of singularintegral operators and Riemann type boundary value problem. Complex Variables, Theory Appl, 1995, 27:67–96
[17] Stern I. Boundary value problems for generalized Cauchy Riemann systems in the space//Krichmann R,Tutschke W, eds. Boundary Value and Initial Value Problem in Complex Analysis. Pitman Res Notes MathPitman, 1991: 159–183
[18] Bernstein S. On the index of Clifford algebra valued singular integral operators and the left linear Riemannproblem. Complex Variables, 1998, 35: 33–64
[19] Bu Yude, Du Jinyuan. The RH boundary value problem of the k-monogenic functions. J Math Anal Appl,2008, 347: 633–644
[20] Gu Longfei, Du Jinyuan, Zhang Zhongxiang. Riemann boundary value problems for triharmonic functionsin Clifford analysis. Adv Appl Clifford Alg, 2013, 23: 77–103
[21] Si Zhongwei, Du Jinyuan. The Hilbert boundary value problem for generalized analytic functions in Cliffordanalysis. Acta Math Sci, 2013, 33B(2): 393–403
[22] Jurkat W B, Nonnenmacher D J F. A generalized n-dimensional Riemann integral and the DivergenceTheorem with singularities. Acta Sci Math (Szeged), 1994, 59: 241–256
[23] Nonnenmacher D J F. Sets of finite perimeter and the Gauss–Green Theorem with singularities. J LondonMath Soc, 1995, 52(2): 335–344
[24] Pfeffer W F. The Gauss–Green Theorem in the context of Lebesgue integration. Bull London Math Soc,2005, 37: 81–94
[25] Pfeffer W F. The Gauss–Green theorem. Adv Math, 1991 87: 93–147
[26] Federer H. The Gauss–Green theorem. Trans Amer Math Soc, 1945, 58: 44–76
[27] Federer H. A note on the Gauss–Green theorem. Proc Amer Math Soc, 1958, 9: 447–451
[28] Federer H. Geometric Measure Theory. New York: Springer, 1969
[29] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University
Press, 1970
[30] Luo Weiyu, Du Jinyuan. Generalized Cauchy theorem in Clifford analysis and its applications. to appear
[31] Evans L C, Gariepy R F. Measure Theory and Fine Properties of Functions. Boca Raton: CRP Press, 1992
[32] Stein E M, Shakarchi R. Real Analysis: Measure Theory, Integration, and Hilbert Space. Princeton: Princeton
University Press, 2005
[33] Ziemer W P. Weakly Differentiable Functions. New York: Springer-Verlag, 1989
[34] Du Jinyuan, Zhang Zhongxiang. A Cauchy’s integral formula for functions with values in a universal Clifford
algebra and its applications. Complex Variables, 2002, 47(10): 915–928
[35] Rudin W. Real and Complex Analysis. New York: McGraw-HillBook Co, 1966
[36] Munkres J R. Topology. 2nd ed. Upper Saddle River, NJ: Prentice Hall Inc, 2000
[37] Falconer K J. The Geometry of Fractal Sets. Cambridge: Cambridge Univ Press, 1985
[38] Mattila P. Geometry of Sets and Measures in Euclidean Spaces. Cambridge: Cambridge Univ Press, 1995
[39] Vekua I N. Generalized Analytic Functions. Oxford: Pergamon Press, 1962
[40] Begehr Heinrich, Zhang Zhongxiang, Du Jinyuan. On Cauchy–Pompeiu formula for functions with valuesin a universal Clifford algebra. Acta Math Sci, 2003, 23B (1): 95–103
[41] Begehr H. Iterated integral operators in Clifford analysis. J Anal Appl, 1999, 18(2): 361–377
[42] Xia Daoxing, Wu Zhuoren, Yan Shaozong. Real Variable Function Theory and Functional Analysis. Shanghai:Shanghai Scientific & Technical Publishers, 1964 |