[1] Adler R J. The Geometry of Random Fields. New York: Wiley, 1981
[2] Barlow M T. Continuity of local times for Lévy processes. Z Wahrsch Werm Gebiete, 1985, 69(1): 23--35
[3] Bertoin S M. L\'{e}vy Process. Cambridge: Cambridge University Press, 1996
[4] Blumenthal R M, Getoor R K. Sample functions of stochastic processes with stationary independent
increments. J Math Mech, 1961, 10: 493--516
[5] Blumenthal R M, Getoor R K. Local times for Markov processes. Z Wahrsch Werm Gebiete, 1964, 4: 50--74
[6] Dalang R C, Walsh J B. Geography of the level sets of the Brownian sheet. Probab Theory Related Fields, 1993, 96(2): 153--176
[7] Dalang R C, Walsh J B. The structure of a Brownian bubble. Probab Theory Related Fields, 1993, 96(4): 475-501
[8] Donsker M D, Varadhan S R S. On laws of the iterated logarithm for local times. Comm Pure Appl Math, 1977, 30: 707--753
[9] Ehm W. Sample function properties of the multi-parameter stable process. Z W, 1981, 56: 195--228
[10] Fitzsimmons P J, Salisbury T S. Capacity and energy for multiparameter processes. Ann Inst Henri
Poincare Probab Statis, 1989, 25: 325--350
[11] Garsia A. Continuity properties for multidimensional Gaussian processes. Proceedings of the Sixth Berkeley Symposium on Mathmatic Statistics and Probability, Vol II. Berkeley: University of California Press, 1972: 369--374
[12] Geman D, Horowitz J. Occupation densities. Ann Probab, 1980, 8: 1--67
[13] Geman D, Horowitz J, Rosen J. A local time analysis of intersection of Brownian paths in the space. Ann Probab, 1984, 12: 369--374
[14] Hawkes J. Local times as stationary processes//Elworthy K D, ed. From Local Times to Global Geometry. Pitman Research Notes in mathematics, Vol 150. Chicago: Longman, 1986: 111--120
[15] Hu Dihe, Liu Luqin, Hu Xiaoyu, Wu Jun. An Introduction to Random Fractal. Wuhan: Wuhan University Press, 1996
[16] Kahane J -P. Some Random Series of Functions. Lexington, MA: Heath and Raytheon Eduction Co, 1968
[17] Kendall W S. Contours of Brownian processes with several-dimensional times. Z Wahrsch Werm Geb, 1980, 52: 267--276
[18] Kesten H. An iterated logarithm law for local time. Duke Math J, 1965, 32: 447--456
[19] Khoshnevisan D. Brownian sheet images and Bessel-Riesz capacity. Trans Amer Math Soc, 1999, 351(7): 2607--2622
[20] Khoshnevisan D, Shi Z. Brownian sheet and capacity. Ann Probab, 1999, 27: 1135--1159
[21] Khoshnevisan D, Xiao Yimin. Level sets of additive Lévy process. Ann Probab, 2002, 30: 62--100
[22] Khoshnevisan D, Xiao Yimin, Zhong Yuquan. Local times of additive processes. Stoch Process Appl, 2003, 104: 193--216
[23] Khoshnevisan D, Xiao Yimin, Zhong Yuquan. Measuring the range of an additive L\'{e}vy process. Ann Probab, 2003, 31(2): 1097--1141
[24] Lacey M T. Limit laws for local times of the Brownian sheet. Probab Theory Related Fields, 1990, 86: 63--86
[25] Legall J -F, Rosen J, Shieh N R. Multiple points of Lévy processes. Ann Probab, 1989, 17: 503--515
[26] Vares M E. Local times for two-parameter Lévy processes. Stoch Process Appl, 1983, 15: 59--82
[27] Xiao Yimin. Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab Theorey Related Fields, 1997, 107: 129--157
[28] Zhong Yuquan, Hu Dihe. Uniform Packing dimension results for multi-parameter stable processes. Acta Math Sci, 2007, 27B(1): 1--10
[29] Zhong Yuquan, Xiao Yimin. Self-intersection local times and multi points of the stable sheet. Acta Math Sci, 1995, 15: 141--152 (Chinese)
|