[1] Bartsch T, de Figueiredo D G. Infinitely many solutions of nonlinear elliptic systems. Topics in nonlinear analysis//Haim Brezis, eds. Progr Nonlinear Differential Equations Appl, Vol 35. Basel, Switzerland: Birkhäuser, 1999: 51--67
[2] Bartsch T, Willem M. On an elliptic equation with concave and convex nonlinearity. Proc Amer Math Soc, 1995, 123(11): 3555--3561
[3] Benci V, Fortunato D. The dual method in critical point theory and multiplicity results for indefinite functionals. Ann Mat Pura Appl, 1982, 32(4): 215--242
[4] Benci V, Rabinowitz P H. Critical point theorems for indefinite functionals. Invent Math, 1979, 52(3): 241--273
[5] Cerami G, et al. Some existence results for superlinear elliptic boundary value problems involving critical exponents. J Funct Anal, 1986, 69(3): 289--306
[6] de Figueiredo D G, Ding Y. Strongly indefinite functionals and multiple solutions of elliptic systems. Trans Amer Math Soc, 2003, 355(7): 2973--2989
[7] Felmer P, de Figueiredo D G. On superquadratic elliptic systems. Trans Amer Math Soc, 1994, 343(1): 99--116
[8] de Figueiredo D G. Nonlinear elliptic systems. Ann Acad Brasil Ciênc, 2000, 72(4): 453--469
[9] Gidas B, et al. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68(3): 209--243
[10] Han P. Strongly indefinite systems with critical Sobolev exponents and weights. Appl Math Lett, 2004, 17(8): 909--917
[11] Han P, Liu Z. Multiple positive solutions of strongly indefinite systems with critical Sobolev exponents and data that change sign. Nonlinear Anal, 2004, 58(1/2): 229--243
[12] Hirano N. Infinitely many solutions for non-cooperative elliptic systems. J Math Anal Appl, 2005, 311(2): 545--566
[13] Hulshof J, Van der Vorst R C A M. Differential systems with strongly indefinite variational structure. J Funct Anal, 1993, 114(1): 32--58
[14] Hulshof J, et al. Strongly indefinite systems with critical Sobolev exponents. Trans Amer Math Soc, 1998, 350(6): 2349--2365
[15] Mitidieri E. A Rellich type identity and applications. Comm Partial Diff Equats, 1993, 18(1/2): 125--151
[16] Pucci P, Serrin J. A general variational identity. Indiana Univ Math J, 1986, 35(3): 681--703
[17] Troy W C. Symmetry properties in systems of semilinear elliptic equations. J Diff Equs, 1981, 42(3): 400--413
[18] Willem M. Minimax Theorems. Boston: Birkh\"{a}user, 1996
[19] Han P. Neumann problems of a class of elliptic equaitons with doubly critical Sobolev exponents. Acta Math Sci, 2004, 24B(4): 633--638
|