[1] Abeyratne R, Knowles J K. Kinetic relations and the propagation of phase boundaries in solids. Arch Rational Mech Anal, 1991, 114: 119--154
[2] Abeyratne R, Knowles J K. Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids.
SIAM J Appl Math, 1991, 51: 1205--1221
[3] Avezedo A, Marchesin D, Plohr B J, Zumbrun K. Non-uniqueness of solutions of Riemann problems caused by 2-cycles of shock saves//Proc of Fifth International Conf on Hyperbolic Equations. Singapore: World Scientific, 1996: 43--51
[4] Bertozzi A, Munch A, Shearer M. Undercompressive shocks in thin film flows. Phys D, 1999, 134: 431--464
[5] Bertozzi A, Shearer M. Existence of undercompressive traveling waves in thin film equations. SIAM J Math Anal, 2000, 32: 194--213
[6] Biskamp D. Nonlinear magnetohydrodynamics, Cambridge monographs on plasma physics. Cambridge Univ Press, 1993
[7] Brio M, Hunter J. Rotationally invariant hyperbolic waves. Comm Pure Appl Math, 1990, 43: 1037--1053
[8] Chalons C, LeFloch P G. A fully discrete scheme for diffusive-dispersive conservation laws. Numerische Math, 2001, 89: 493--509
[9] Chalons C, LeFloch P G. High-order entropy conservative schemes and kinetic relations for van der Waals fluids. J Comput Phys, 2001, 167: 1--23
[10] Cohen R H, Kulsrud R M. Non-linear evolution of quasi-parallel propagating hydro-magnetic waves. Phys Fluid, 1974, 17: 2215--2225
[11] Fan H T, Slemrod M. The Riemann problem for systems of conservation laws of mixed type//Shock Induced Transitions and Phase Structures in General Media. IMA Vol Math Appl 52. New York: Springer-Verlag, 1993: 61--91
[12] Fjordholm U S, Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shallow water equations//Cucker F, Pinkus A, Todd M, eds. Foundations of Computational Mathematics, Hong Kong 2008. London Math Soc Lecture Notes Ser 363. London Math Soc, 2009: 93--139
[13] Freist\"uhler H. Dynamical stability and vanishing viscosity: a case study of a non-strictly hyperbolic system of conservation laws. Comm Pure Appl Math, 1992, 45: 561--582
[14] Freist\"uhler H. Stability of nonclassical shock waves//Proc of Fifth International Conference on Hyperbolic Equations. Singapore: World Scientific, 1996: 120--129
[15] Freistuhler H, Pitman E B. A numerical study of a rotationally degenerate hyperbolic system, Part 1: The Riemann problem. J Comput Phys, 1992, 100: 306--321
[16] Hayes B T, LeFloch P G. Nonclassical shocks and kinetic relations: Scalar conservation laws. Arch Rational Mech Anal, 1997, 139: 1--56
[17] Hayes B T, LeFloch P G. Nonclassical shocks and kinetic relations: Finite difference schemes. SIAM J Num Anal, 1998, 35: 2169--2194
[18] Hayes B T, LeFloch P G. Nonclassical shocks and kinetic relations: Strictly hyperbolic systems. SIAM J Math Anal, 2000, 31: 941--991
[19] Jacobs D, McKinney W R, Shearer M. Traveling wave solutions of a modified Korteweg De-Vries equation. J Diff Eqns, 1995, 116: 448--467
[20] Keyfitz B, Kranzer H. A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch Rational Mech Anal, 1980, 72: 219--241
[21] Lax P D. Hyperbolic systems of conservation laws, II. Comm Pure Appl Math, 1957, 10: 537--566
[22] Lax P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves//Regional Confer Series in Appl Math 11. Philadelphia: SIAM, 1973
[23] LeFloch P G. Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme. Arch Rational Mech Anal, 1993, 123: 153--197
[24] LeFloch P G. An introduction to nonclassical shocks of systems of conservation laws//International School on Hyperbolic Problems, Freiburg, Germany, Oct 97. Kroner D, Ohlberger M, Rohde C, eds. Lect Notes Comput Eng, Vol 5. Springer-Verlag, 1999: 28--72
[25] LeFloch P G. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics, ETH Zurich. Birkh\"auser, 2002
[26] LeFloch P G. Kinetic relations for undercompressive shock waves. Physical, mathematical, and numerical issues. Centre for Advanced Study of the Norwegian Academy of Science and Letters. Holden H, Karlsen K, ed. 2010
[27] LeFloch P G, Mercier J M, Rohde C. Fully discrete entropy conservative schemes of arbitrary order. SIAM J Numer Anal, 2002, 40: 1968--1992
[28] LeFloch P G, Mohammadian M. Why many theories of shock waves are necessary. Kinetic functions, equivalent equations and fourth-order models. J Comput Phys, 2008, 27: 4162--4189
[29] LeFloch P G, Rohde C. High order schemes, entropy inequalities and nonclassical shocks. SIAM J Numer Anal, 2000, 37: 2023--2060
[30] LeFloch P G, Shearer M. Nonclassical Riemann solvers with nucleation. Proc Royal Soc Edinburgh, 2004, 134A:941-964
[31] Levy R, Shearer M. Comparison of two dynamic contact line models for driven thin liquid films. European J Appl Math, 2004, 15: 625--642
[32] Liu T P. The Riemann problem for general 2×2 conservation laws. Trans Amer Math Soc, 1974, 199: 89--112
[33] LeVeque R J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge Univ Press, 2002
[34] Myong R S, Roe P L. Shock waves and rarefaction waves in magnetohydrodynamics, Part 1. A model system. J Plasma Phys, 1997, 58: 485--519
[35] Roe P L, Balsara D S. Note on the eigensystem of magnetohydrodynamics. SIAM J Appl Math, 1996, 56: 57--67
[36] Slemrod M. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch Rational Mech Anal, 1983, 81: 301--315
[37] Slemrod M. A limiting viscosity approach to the Riemann problem for materials exhibiting change of phase. Arch Rational Mech Anal, 1989, 105: 327--365
[38] Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws, I. Math Comp, 1987, 49: 91--103
[39] Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems.
Acta Numerica, 2003, 12: 451--512
[40] Torrilhon M. Uniqueness conditions for Riemann problems of ideal magneto-hydrodynamics. J Plasma Phys, 2003, 69: 253--276
[41] Torrilhon M. Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics. J Comput Phys, 2003, 192: 73--94
[42] Truskinovsky J. Dynamics of non-equilibrium phase boundaries in a heat conducting nonlinear elastic medium. J Appl Math and Mech (PMM), 1987, 51: 777--784
[43] Truskinovsky L. Kinks versus shocks//Fosdick R, Dunn E, Slemrod M, ed. Shock Induced Transitions and Phase Structures in General Media. IMA Vol Math Appl, 52. New York: Springer-Verlag, 1993: 185--229
[44] Wu C C, Kennel C F. The small amplitude magnetohydrodynamic Riemann problem. Phys Fluids B, 1993, 5: 2877--2886
|