[1] Ai X, Li Z.Global smooth solutions to the 3D non-resistive MHD equations with low regularity axisymmetric data. Commun Math Sci, 2022, 20: 1979-1994 [2] Chemin J Y, Gallagher I. Wellposedness and stability results for the Navier-Stokes equations in  . Ann Inst H Poincaré Anal Non Linéaire, 2009, 26(2): 599-624 [3] Chemin J Y, Gallagher I, Paicu M. Global regularity for some classes of large solutions to the Navier-Stokes equations. Ann Math, 2011, 173: 983-1012 [4] Chemin J Y, McCormick D, Robinson J, Rodrigo J. Local existence for the non-resistive MHD equations in Besov spaces. Adv Math, 2016, 286: 1-31 [5] Danchin R, Tan J. On the well-posedness of the Hall-magnetohydrodynamics system in critical spaces. Commun Partial Differ Equ, 2021, 46: 31-65 [6] Duvaut G, Lion J L. Inéquations en thermoélasticité et magnéohydrodynamique. Arch Ration Mech Anal, 1972, 46: 241-279 [7] Grimm R C, Dewar R L, Manickam J. Ideal MHD stability calculations in axisymmetric toroidal coordinate systems. J Comput, 1983, 49(1): 94-117 [8] Hasler U, Schneebeli A, Sch tzau D. Mixed finite element approximation of incompressible MHD problems based on weighted regularization. Appl Numer Math, 2004, 51(1): 19-45 [9] He L B, Xu L, Yu P. On global dynamics of three dimensional magnetohydrodynamics: nonlinear stability of Alfvén waves. Ann PDE, 2018, 4: 1-105[] Holst M, Lunasin E, Tsogtgerel G. Analysis of a general family of regularized Navier-Stokes and MHD models. J Nonlinear Sci, 2010, 20(5): 523-567 [10] Jiang Z, Zhu M. Regularity criteria for the 3D generalized MHD and Hall-MHD systems. Bull Malays Math Sci Soc, 2018, 41: 105-122 [11] Jiu Q, Liu J. Global regularity for the 3D axisymmetric MHD equations with horizontal dissipation and vertical magnetic diffusion. Discrete Contin Dyn Syst, 2015, 35(1): 301-322 [12] Jiu Q, Yu H, Zheng X. Global well-posedness for axisymmetric MHD system with only vertical viscosity. J Differ Equ, 2017, 263(5): 2954-2990 [13] Ladyzhenskaya O A. On the unique global solvability to the Cauchy problem for the Navier-Stokes equations in the presence of the axial symmetry. Zap Nauchn Sem Leningrad Otdel Mat Inst Steklov, 1968, 7: 155-177 [14] Li Z, Liu W. Regularity criteria for the 3D axisymmetric non-resistive MHD system in Lorentz spaces. Results Math, 2023, 78(3): Art 86 [15] Lei Z. On axially symmetric incompressible magnetohydrodynamics in three dimensions. J Differ Equ, 2015, 259(7): 3202-3215 [16] Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math, 1934, 63: 193-248 [17] Liu Y. Global well-posedness of 3D axisymmetric MHD system with pure swirl magnetic field. Acta Appl Math, 2018, 155: 21-39 [18] Liu Y, Xu L. On the Existence and structures of almost axisymmetric solutions to 3-D Navier-Stokes equations. SIAM J Math Anal, 2023, 55(1): 458-485[] Sakakibara S, Watanabe K Y, Ohdachi S, et al. Study of MHD stability in LHD. Fusion Sci Technol, 2010, 58(1): 176-185 [19] Bedrossian J, Vicol V.The Mathematical Analysis of the Incompressible Euler and Navier-Stokes Equations: An Introduction. Providence, RI: Amer Math Soc, 2022 [20] Sermange M, Temam R. Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36(5): 635-664 [21] Ukhovskii M R, Iudovich V I. Axially symmetric flows of ideal and viscous fluids filling the whole space. J Appl Math Mech, 1968, 32: 59-69 [22] Wang S, Wu J. Axially symmetric incompressible MHD in three dimensions. J Math Anal Appl, 2015, 426(1): 440-465 [23] Wang P, Guo Z. Global axisymmetric solutions to the 3D MHD equations with nonzero swirl. J Geom Anal, 2022, 32(10): Art 258 [24] Zhang Z, Yao Z. 3D axisymmetric MHD system with regularity in the swirl component of the vorticity. Comput Math Appl, 2017, 73(12): 2573-2580 |