[1] Ai W, Yang Y, Ye D. The  dual Minkowski problem for unbounded closed convex sets. arXiv:2404.09804v1 [2] Artstein-Avidan S, Sadovsky S, Wyczesany K. A zoo of dualities. J Geom Anal, 2023, 33(8): Art 238 [3] Bakelman I J. Variational problems and elliptic Monge-Ampère equations. J Differential Geom, 1983, 18: 669-699 [4] Böröczky K J, Hegedüs P. The cone volume measure of antipodal points. Acta Math Hungar, 2015, 146(2): 449-465 [5] Böröczky K J, Hegedüs P, Zhu G. On the discrete logarithmic Minkowski problem. Int Math Res Not IMRN, 2016, 6: 1807-1838 [6] Böröczky K J, Henk M. Cone-volume measures of general centered convex bodies. Adv Math, 2016, 286: 703-721 [7] Böröczky K J, Henk M. Cone-volume measure and stability. Adv Math, 2017, 306: 24-50 [8] Böröcky K J, Lutwak E, Yang D, Zhang G. The logarithmic Minkowski problem. J Amer Math Soc, 2013, 26(3): 831-852 [9] Chen S, Li Q R, Zhu G. The logarithmic Minkowski problem for non-symmetric measures. Trans Amer Math Soc, 2019, 371(4): 2623-2641 [10] Gage M, Li Y. Evolving plane curves by curvature in relative geometries, II. Duke Math J, 1994, 75(1): 79-98 [11] Henk M, Linke E. Cone-volume measures of polytopes. Adv Math, 2014, 253: 50-62 [12] Huang Y, Lutwak E, Yang D, Zhang G. Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math, 2016, 216(2): 325-388 [13] Khovanskiĭ A, Timorin V. On the theory of coconvex bodies. Discrete & Comput Geom, 2014, 52(4): 806-823 [14] Kryvonos L, Langharst D. Weighted Minkowski's existence theorem and projection bodies. Trans Amer Math Soc, 2023, 376(12): 8447-8493 [15] Li N, Ye D, Zhu B. The dual Minkowski problem for unbounded closed convex sets. Math Ann, 2024, 388(2): 2001-2039 [16] Livshyts G V. An extension of Minkowski's theorem and its applications to questions about projections for measures. Adv Math, 2019, 356: Art 106803 [17] Lutwak E. Dual mixed volumes. Pacific J Math, 1975, 58(2): 531-538 [18] Lutwak E. The Brunn-Minkowski-Firey theory I. Mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38(1): 131-150 [19] Rashkovskii A. Copolar convexity. Ann Polon Math, 2017, 120(1): 83-95 [20] Schneider R. Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press, 2014 [21] Schneider R. A Brunn-Minkowski theory for coconvex sets of finite volume. Adv Math, 2018, 332(1): 199-234 [22] Schneider R. Minkowski type theorems for convex sets in cones. Acta Math Hungar, 2021, 164(1): 282-295 [23] Schneider R. Pseudo-cones. Adv in Appl Math, 2024, 155: Art 102657 [24] Schneider R. A weighted Minkowski theorem for pseudo-cones. Adv Math, 2024, 450: Art 109760 [25] Stancu A. The discrete planar  -Minkowski problem. Adv Math, 2002, 167(1): 160-174 [26] Stancu A. On the number of solutions of the discrete two-dimensional  -Minkowski problem. Adv Math, 2003, 180(1): 290-323 [27] Xu Y, Li J, Leng G. Dualities and endomorphisms of pseudo-cones. Adv in Appl Math, 2023, 142: Art 102434 [28] Yang J, Ye D, Zhu B. On the  Brunn-Minkowski theory and the  Minkowski problem for -coconvex sets. Int Math Res Not IMRN, 2023, 7: 6252-6290 [29] Zhu G. The logarithmic Minkowski problem for polytopes. Adv Math, 2014, 262: 909-931 |