[1] Alonso J. Uniqueness properties of isosceles orthogonality in normed linear spaces. Ann Sci Math Québec, 1994, 18: 25-38 [2] Alonso J, Martini H, Wu S. On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequat Math, 2012, 83: 153-189 [3] Alonso J, Martini H, Wu S. Orthogonality Types in Normed Linear Spaces// Papadopoulos A. Surveys in Geometry I. Cham: Springer, 2022: 97-170 [4] Birkhoff G. Orthogonality in linear metric spaces. Duke Math J, 1935, 1(2): 169-172 [5] Chmieliński J. On an ε-Birkhoff orthogonality. J Inequal Pure Appl Math, 2005, 6(3): Article 79 [6] Chmieliński J, Stypuła T, Wójcik P. Approximate orthogonality in normed spaces and its applications. Linear Algebra Appl, 2017, 531: 305-317 [7] Chmieliński J, Wójcik P. Approximate symmetry of Birkhoff orthogonality. Journal of Mathematical Analysis and Applications, 2018, 461(1): 625-640 [8] James R C. Orthogonality in normed linear spaces. Duke Math J, 1945, 12: 291-302 [9] Ji D, Li J, Wu S. On the uniqueness of isosceles orthogonality in normed linear spaces. Results Math, 2011, 59: 157-162 [10] Lin P K. A remark on the Singer-orthogonality in normed linear spaces. Math Nachr, 1993, 160: 325-328 [11] Martini H, Swanepoel K J. Antinorms and Randon curves. Aequationes Math, 2006, 72(1/2): 110-138 [12] Martini H, Wu S. Orthogonalities, transitivity of norms and characterizations of Hilbert spaces. Rocky Mountain Journal of Mathematics, 2015, 45(1): 287-301 [13] Megginson R E. An Introduction to Banach Space Theory. New York: Springer, 1998 [14] Singer I. Angles abstraits et fonctions trigonométriques dans les espaces de Banach. Acad R P Romîne Bul Şti Secţ Şti Mat Fiz, 1957, 9: 29-42 [15] Thompson A C. Minkowski Geometry. Cambridge: Cambridge University Press, 1996 |