[1] Pick G.Über eine eigenschaft der konformen Abbildung kreisförmiger Bereiche. Math Ann, 1915, 77(1): 1-6 [2] Ahlfors L V.An extension of Schwarz's lemma. Trans Amer Math Soc, 1938, 43(3): 359-364 [3] Chen Z, Cheng S Y, Lu Q.Schwarz lemma for complete Kähler manifolds. Sci Sin, 1979, 22(11): 1238-1247 [4] Chern S S.On holomorphic mappings of Hermitian manifolds of the same dimension. Entire Func Rela Parts Anal. Providence, RI: Amer Math Soc, 1968: 157-170 [5] Lei N.Liouville theorems and a Schwarz lemma for holomorphic mappings between Kähler manifolds. Comm Pure Appl Math, 2021, 74(5): 1100-1126 [6] Lu Y C.Holomorphic mappings of complex manifolds. J Differ Geom, 1968, 2(3): 299-312 [7] Yau S T.A general Schwarz lemma for Kähler manifolds. Amer J Math, 1978, 100(1): 197-203 [8] Yang H C, Chen Z H.On the Schwarz lemma for complete Hermitian manifolds// Proceedings of the 1981 Hangzhou Conference. Boston: Birkhäuser, 1984: 99-116 [9] Tosatti V.A general Schwarz lemma for almost-Hermitian manifolds. Commun Anal Geom, 2007, 15(5): 1063-1086 [10] Chen H, Nie X. Schwarz lemma: the case of equality and an extension. J Gemo Anal, 2022, 32(3): Art 92 [11] Yu W.Tamed exhaustion functions and Schwarz type lemmas for almost Hermitian manifolds. Bull Korean Math Soc, 2022, 59(6): 1423-1438 [12] Goldberg S I, Ishihara T, Petridis N C.Mappings of bounded dilatation of Riemannian manifolds. J Differ Geom, 1975, 10(4): 619-630 [13] Goldberg S I, HAR Z, et al.A general Schwarz lemma for Riemannian-manifolds. Bull Soc Math Grece, 1977, 18(18A): 141-148 [14] Shen C L.A generalization of the Schwarz-Ahlfors lemma fo the theory of harmonic maps. J Reine Angew Math, 1984, 348: 23-33 [15] Chen Q, Jost J, Wang G.A maximum principle for generalizations of harmonic maps in Hermitian. J Geom Anal, 2015, 25(4): 2407-2426 [16] Chen Q, Jost J, Qiu, H.Existence and Liouville theorems for $V$-harmonic maps from complete manifolds. Ann Global Anal Geom, 2012, 42: 565-584 [17] Chen Q, Jost J, Qiu, H.Omori-Yau maximum principles, $V$-harmonic maps and their geometric applications. Ann Global Anal Geom, 2014, 46: 259-279 [18] Jost J, Yau S T.A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorem in Hermitian geometry. Acta Math, 1993, 170: 221-254 [19] Kokarev G.On pseudo-harmonic maps in conformal geometry. Proc London Math Soc, 2009, 99(3): 168-194 [20] Chen Q, Qiu H.Rigidity of self-shrinkers and translating solitons of mean curvature flows. Adv Math, 2016, 294: 517-531 [21] Chen Q, Zhao G W.A Schwarz lemma for $V$-harmonic maps and their applications. Bull Aust Math Soc, 2017, 96: 504-512 [22] Chen Q, Li K, Qiu H.A Schwarz lemma and a Liouville theorem for generalized harmonic maps. Nonlinear Anal, 2022, 214(1): 112556 [23] Tondeur P.Geometry of Foliations. Basel: Birkhäuser, 1997 [24] Gromoll D, Walschap G.Metric Foliations and Curvature. Basel: Birkhäuser, 2009 [25] Dong Y.Eells-Sampson type theorems for subelliptic harmonic maps from sub-Riemannian manifolds. J Geom Anal, 2021, 31(4): 3608-3655 [26] Huang X, Yu W. A generalization of the Schwarz lemma for transversally harmonic maps. J Geom Anal, 2024, 34(2): Art 50 [27] Nakagawa H, Takagi R.Harmonic foliations on a compact Riemannian manifold of non-negative constant curvature. Tohoku Math J, Second Series, 1988, 40(3): 465-471 [28] Li Z B.Harmonic foliation on the sphere. Tsukuba J Math, 1991, 15(2): 397-407 [29] Jung M J, Jung S D.On transversally harmonic maps of foliated Riemannian manifolds. J Korean Math Soc, 2011, 49(5): 977-991 [30] Dal Jung S, Jung M J.Transversally holomorphic maps between Kähler foliations. J Math Anal Appl, 2014, 416(2): 683-697 [31] Konderak J J, Wolak R.Transversally harmonic maps between manifolds with Riemannian foliations. Quart J Math, 2003, 54(3): 335-354 [32] Cheng S Y.Liouville theorem for harmonic maps. Proc Symp Pure Math, 1980, 36: 147-151 |