Acta mathematica scientia,Series B ›› 2024, Vol. 44 ›› Issue (2): 484-514.doi: 10.1007/s10473-024-0207-y
Previous Articles Next Articles
Xiaosheng LIN1, Dachun YANG1,*, Sibei YANG2, Wen YUAN3
Received:
2022-12-02
Revised:
2023-10-15
Online:
2024-04-25
Published:
2024-04-16
Contact:
*Dachun YANG, E-mail: dcyang@bnu.edu.cn
About author:
Xiaosheng LIN, E-mail: xslin@mail.bnu.edu.cn; Sibei YANG, E-mail: yangsb@lzu.edu.cn; Wen YUAN, E-mail: wenyuan@bnu.edu.cn
Supported by:
CLC Number:
Xiaosheng LIN, Dachun YANG, Sibei YANG, Wen YUAN. MAXIMAL FUNCTION CHARACTERIZATIONS OF HARDY SPACES ASSOCIATED WITH BOTH NON-NEGATIVE SELF-ADJOINT OPERATORS SATISFYING GAUSSIAN ESTIMATES AND BALL QUASI-BANACH FUNCTION SPACES[J].Acta mathematica scientia,Series B, 2024, 44(2): 484-514.
[1] Adams D R. Morrey Spaces.Lecture Notes in Applied and Numerical Harmonic Analysis. Cham: Birkhäuser/Springer, 2015 [2] Andersen K F, John R T. Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math, 1980, 69(1): 19-31 [3] Auscher P, Duong X T, McIntosh A. Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished manuscript, 2005 [4] Auscher P, Mourgoglou M. Representation and uniqueness for boundary value elliptic problems via first order systems. Rev Mat Iberoam, 2019, 35(1): 241-315 [5] Auscher P, Prisuelos-Arribas C. Tent space boundedness via extrapolation. Math Z, 2017, 286(3): 1575-1604 [6] Benedek A, Panzone R. The space $L^p$, with mixed norm. Duke Math J, 1961, 28: 301-324 [7] Bennett C, Sharpley R.Interpolation of Operators. Boston: Academic Press, 1988 [8] Bui T A. Weighted Hardy spaces associated to discrete Laplacians on graphs and applications. Potential Anal, 2014, 41(3): 817-848 [9] Bui T A, Cao J, Ky L D, et al. Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal Geom Metr Spaces, 2013, 1: 69-129 [10] Bui T A, Cao J, Ky L D, et al. Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Taiwanese J Math, 2013, 17(4): 1127-1166 [11] Bui T A, Duong X T, Ly F K. Maximal function characterizations for new local Hardy-type spaces on spaces of homogeneous type. Trans Amer Math Soc, 2018, 370(10): 7229-7292 [12] Bui T A, Duong X T, Ly F K. Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and applications. J Funct Anal, 2020, 278(8): Art 108423 [13] Bui T A, Li J. Orlicz-Hardy spaces associated to operators satisfying bounded $H^\infty$ functional calculus and Davies-Gaffney estimates. J Math Anal Appl, 2011, 373(2): 485-501 [14] Chiarenza F, Frasca M. Morrey spaces and Hardy-Littlewood maximal function. Rend Mat Appl (7), 1987, 7(3): 273-279 [15] Cleanthous G, Georgiadis A G, Nielsen M. Anisotropic mixed-norm Hardy spaces. J Geom Anal, 2017, 27(4): 2758-2787 [16] Cleanthous G, Georgiadis A G, Nielsen M. Discrete decomposition of homogeneous mixed-norm Besov spaces//Cwikel M, Milman M. Functional Analysis, Harmonic Analysis,Image Processing: A Collection of Papers in Honor of Björn Jawerth. Contemp Math 693. Providence, RI: Amer Math Soc, 2017: 167-184 [17] Cleanthous G, Georgiadis A G, Nielsen M. Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. Appl Comput Harmon Anal, 2019, 47(2): 447-480 [18] Coifman R R, Lions P L, Meyer Y, Semmes S. Compensated compactness and Hardy spaces. J Math Pures Appl (9), 1993, 72(3): 247-286 [19] Coulhon T, Duong X T. Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss. Adv Differential Equations, 2000, 5(1): 343-368 [20] Cruz-Uribe D V, Fiorenza A. Variable Lebesgue Spaces, Foundations and Harmonic Analysis. Heidelberg: Birkhäuser/Springer, 2013 [21] Cruz-Uribe D V, Wang L A D. Variable Hardy spaces. Indiana Univ Math J, 2014, 63(2): 447-493 [22] Del Campo R, Fernández A, Mayoral F, Naranjo F. Orlicz spaces associated to a quasi-Banach function space: applications to vector measures and interpolation. Collect Math, 2021, 72(3): 481-499 [23] Diening L, Hästö P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256(6): 1731-1768 [24] Duoandikoetxea J. Fourier Analysis.Providence, RI: American Mathematical Society, 2001 [25] Duong X T, Li J. Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus. J Funct Anal, 2013, 264(6): 1409-1437 [26] Duong X T, Yan L. Duality of Hardy and BMO spaces associated with operators with heat kernel bounds. J Amer Math Soc, 2005, 18(4): 943-973 [27] Duong X T, Yan L. New function spaces of BMO type, the John-Nirenberg inequality, interpolation,applications. Comm Pure Appl Math, 2005, 58(10): 1375-1420 [28] Fefferman C, Stein E M. $H^p$ spaces of several variables. Acta Math, 1972, 129(3): 137-193 [29] Georgiadis A G, Kerkyacharian G, Kyriazis G, Petrushev P. Atomic and molecular decomposition of homogeneous spaces of distributions associated to non-negative self-adjoint operators. J Fourier Anal Appl, 2019, 25(6): 3259-3309 [30] Georgiadis A G, Kerkyacharian G, Kyriazis G, Petrushev P. Homogeneous Besov and Triebel-Lizorkin spaces associated to non-negative self-adjoint operators. J Math Anal Appl, 2017, 449(2): 1382-1412 [31] Grafakos L. Classical Fourier Analysis.Third edition. New York: Springer, 2014 [32] Ho K P. Vector-valued maximal inequalities on weighted Orlicz-Morrey spaces. Tokyo J Math, 2013, 36(2): 49-512 [33] Ho K P. Atomic decomposition of Hardy-Morrey spaces with variable exponents. Ann Acad Sci Fenn Math, 2015, 40(1): 31-62 [34] Ho K P. Dilation operators and integral operators on amalgam space $(L_p,l_q)$. Ric Mat, 2019, 68(2): 661-677 [35] Hofmann S, Mayboroda S. Hardy and BMO spaces associated to divergence form elliptic operators. Math Ann, 2009, 344(1): 37-116 [36] Hofmann S, Mayboroda S, McIntosh A. Second order elliptic operators with complex bounded measurable coefficients in $L^p$, Sobolev and Hardy spaces. Ann Sci École Norm Sup (4), 2011, 44(5): 723-800 [37] Holland F. Harmonic analysis on amalgams of $L^p$ and $l^q$. J London Math Soc (2), 1975, 10: 295-305 [38] Hörmander L. Estimates for translation invariant operators in $L^p$ spaces. Acta Math, 1960, 104: 93-140 [39] Huang L, Liu J, Yang D, Yuan W.Atomic and Littlewood-Paley characterizations of anisotropic mixed-norm Hardy spaces and their applications. J Geom Anal, 2019, 29(3): 1991-2067 [40] Huang L, Liu J, Yang D, Yuan W. Real-variable characterizations of new anisotropic mixed-norm Hardy spaces. Commun Pure Appl Anal, 2020, 19(6): 3033-3082 [41] Jia H, Wang H. Decomposition of Hardy-Morrey spaces. J Math Anal Appl, 2009, 354(1): 99-110 [42] Kikuchi N, Nakai E, Tomita N, et al. Calderón-Zygmund operators on amalgam spaces and in the discrete case. J Math Anal Appl, 2007, 335(1): 198-212 [43] Kokilashvili V, Krbec M.Weighted Inequalities in Lorentz and Orlicz Spaces. River Edge, NJ: World Scientific Publishing, 1991 [44] Lizorkin P I. Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Applications. Izv Akad Nauk SSSR Ser Mat, 1970, 34: 218-247 [45] Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43(1): 126-166 [46] Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato sapces. J Funct Anal, 2012, 262(9): 3665-3748 [47] Nakano H.Modulared Semi-Ordered Linear Spaces. Tokyo: Maruzen Co, 1950 [48] Nakano H.Topology of Linear Topological Spaces. Tokyo: Maruzen Co, 1951 [49] Nogayama T. Mixed Morrey spaces. Positivity, 2019, 23(4): 961-1000 [50] Nogayama T, Ono T, Salim D, Sawano Y. Atomic decomposition for mixed Morrey spaces. J Geom Anal, 2021, 31(9): 9338-9365 [51] Ouhabaz E M.Analysis of Heat Equations on Domains. Princeton, NJ: Princeton University Press, 2005 [52] Pazy A.Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983 [53] Rao M M, Ren Z D.Theory of Orlicz Spaces. New York: Marcel Dekker, 1991 [54] Rao M M, Ren Z D.Applications of Orlicz Spaces. New York: Marcel Dekker, 2002 [55] Sawano Y, Di Fazio G, Hakim D.Morrey Spaces: Introduction and Applications to Integral Operators and PDE's. Vol I. Boca Raton, FL: CRC Press, 2020 [56] Sawano Y, Di Fazio G, Hakim D.Morrey Spaces: Introduction and Applications to Integral Operators and PDE's. Vol II. Boca Raton, FL: CRC Press, 2020 [57] Sawano Y, Ho K P, Yang D, Yang S. Hardy spaces for ball quasi-Banach function spaces. Dissertationes Math, 2017, 525: 1-102 [58] Semmes S. A primer on Hardy spaces,some remarks on a theorem of Evans and Müller. Comm Partial Differential Equations, 1994, 19(1): 277-319 [59] Song L, Yan L. A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates. Adv Math, 2016, 287: 463-484 [60] Song L, Yan L. Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous type. J Evol Equ, 2018, 18(1): 221-243 [61] Stein E M, Weiss G. On the theory of harmonic functions of several variables. I. The theory of $H^p$-spaces. Acta Math, 1960, 103: 25-62 [62] Wang F, Yang D, Yang S. Applications of Hardy spaces associated with ball quasi-Banach function spaces. Results Math, 2020, 75(1): Art 26 [63] Yan L. Classes of Hardy spaces associated with operators, duality theorem and applications. Trans Amer Math Soc, 2008, 360(8): 4383-4408 [64] Yan X, He Z, Yang D, Yuan W. Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Littlewood-Paley characterizations with applications to boundedness of Calderón-Zygmund operators. Acta Math Sin (Engl Ser), 2022, 38(7): 1133-1184 [65] Yan X, He Z, Yang D, Yuan W. Hardy spaces associated with ball quasi-Banach function spaces on spaces of homogeneous type: Characterizations of maximal functions, decompositions,dual spaces. Math Nachr, 2023, 296(7): 3056-3116 [66] Yuan W, Sickel W, Yang D.Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, Vol 2005. Berlin: Springer-Verlag, 2010 [67] Yang D, Yang S.Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated to non-negative self-adjoint operators satisfying Gaussian estimates. Commun Pure Appl Anal, 2016, 15(6): 2135-2160 [68] Yosida K. Functional Analysis.Berlin: Springer-Verlag, 1995 [69] Zhang Y, Yang D, Yuan W, Wang S.Weak Hardy-type spaces associated with ball quasi-Banach function spaces I: Decompositions with applications to boundedness of Calderón-Zygmund operators. Sci China Math, 2021, 64(9): 2007-2064 [70] Zhang Y, Yang D, Yuan W, Wang S. Real-variable characterizations of Orlicz-slice Hardy spaces. Anal Appl (Singap), 2019, 17(4): 597-664 [71] Zhuo C, Yang D. Maximal function characterizations of variable Hardy spaces associated with non-negative self-adjoint operators satisfying Gaussian estimates. Nonlinear Anal, 2016, 141: 16-42 |
[1] | Wei Ding, Yan Tang, Yueping Zhu. THE BOUNDEDNESS OF OPERATORS ON WEIGHTED MULTI-PARAMETER LOCAL HARDY SPACES* [J]. Acta mathematica scientia,Series B, 2024, 44(1): 386-404. |
[2] | Shanli YE, Guanghao FENG. A DERIVATIVE-HILBERT OPERATOR ACTING ON HARDY SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(6): 2398-2412. |
[3] | Yanyan han, Huoxiong wu. THE FRACTIONAL TYPE MARCINKIEWICZ INTEGRALS AND COMMUTATORS ON WEIGHTED HARDY SPACES* [J]. Acta mathematica scientia,Series B, 2023, 43(5): 1981-1996. |
[4] | Maofa Wang, Qi Wu, Kaikai Han. COMPLEX SYMMETRY OF TOEPLITZ OPERATORS OVER THE BIDISK∗ [J]. Acta mathematica scientia,Series B, 2023, 43(4): 1537-1546. |
[5] | Ru PENG, Yaqing FAN. TOEPLITZ OPERATORS FROM HARDY SPACES TO WEIGHTED BERGMAN SPACES IN THE UNIT BALL OF Cn [J]. Acta mathematica scientia,Series B, 2022, 42(1): 349-363. |
[6] | Kaikai HAN, Maofa WANG, Qi WU. UNBOUNDED COMPLEX SYMMETRIC TOEPLITZ OPERATORS [J]. Acta mathematica scientia,Series B, 2022, 42(1): 420-428. |
[7] | Fangwen DENG, Caiheng OUYANG, Guantie DENG. SOME QUESTIONS REGARDING VERIFICATION OF CARLESON MEASURES [J]. Acta mathematica scientia,Series B, 2021, 41(6): 2136-2148. |
[8] | Kehe ZHU. THE BEREZIN TRANSFORM AND ITS APPLICATIONS [J]. Acta mathematica scientia,Series B, 2021, 41(6): 1839-1858. |
[9] | Ruhan ZHAO. ON F(p,q,s) SPACES [J]. Acta mathematica scientia,Series B, 2021, 41(6): 1985-2020. |
[10] | Wei QU, Tao QIAN, Guantie DENG, Youfa LI, Chunxu ZHOU. ANALYTIC PHASE RETRIEVAL BASED ON INTENSITY MEASUREMENTS [J]. Acta mathematica scientia,Series B, 2021, 41(6): 2123-2135. |
[11] | Kwok-Pun HO. A GENERALIZATION OF BOYD'S INTERPOLATION THEOREM [J]. Acta mathematica scientia,Series B, 2021, 41(4): 1263-1274. |
[12] | Junqiang ZHANG, Dachun YANG. ISOMORPHISMS OF VARIABLE HARDY SPACES ASSOCIATED WITH SCHRÖDINGER OPERATORS [J]. Acta mathematica scientia,Series B, 2021, 41(1): 39-66. |
[13] | Wei DING, Yueping ZHU. MIXED HARDY SPACES AND THEIR APPLICATIONS [J]. Acta mathematica scientia,Series B, 2020, 40(4): 945-969. |
[14] | Jinxia LI, Baode LI, Jianxun HE. THE BOUNDEDNESS FOR COMMUTATORS OF ANISOTROPIC CALDERÓN-ZYGMUND OPERATORS [J]. Acta mathematica scientia,Series B, 2020, 40(1): 45-58. |
[15] | Turdebek N. BEKJAN, Kordan N. OSPANOV. COMPLEX INTERPOLATION OF NONCOMMUTATIVE HARDY SPACES ASSOCIATED WITH SEMIFINITE VON NEUMANN ALGEBRAS [J]. Acta mathematica scientia,Series B, 2020, 40(1): 245-260. |
|