[1] Ahern P. On the range of the Berezin transform. J Funct Anal, 2004, 215:206-216 [2] Ahern P, Flores M, Rudin W. An invariant volume-mean-value property. J Funct Anal, 1993, 111:380-397 [3] Aleman A, Pott S, Reguera C. Sarason conjecture on the Bergman space. Int Math Res Not IMRN, 2017, 14:4320-4349 [4] Arazy J, Englis M. Iterates and boundary behavior of the Berezin transform. Ann Inst Fourier, 2001, 51:1101-1133 [5] Arazy J, Fisher S, Peetre J. Hankel operators on weighted Bergman spaces. Amer Math J, 1988, 110:989-1053 [6] Arazy J, Zhang G. Invariant mean value and harmonicity in Cartan and Siegel domains//Interactions Between Functional Analysis, Harmonic Analysis, and Probability, (Columbia, MO, 1994). Lecture Notes in Pure and Applied Math 175. New York:Marcel Dekker, 1996:19-40 [7] Axler S, Cuckovic Z. Commuting Toeplitz operators with harmonic symbols. Integral Equations Operator Theory, 1991, 14:1-12 [8] Axler S, Zheng D. Compact operators via the Berezin transform. Indiana Univ Math J, 1998, 47:387-400 [9] Axler S, Zheng D. The Berezin transform on the Toeplitz algebra. Studia Math, 1998, 127:113-136 [10] Bauer W, Coburn L, Isralowitz J. Heat flow, BMO, and compactness of Toeplitz operators. J Funct Anal, 2010, 259:57-78 [11] Bauer W, Isralowitz J. Compactness characterization of operators in the Toeplitz algebra of the Fock space Fαp. J Funct Anal, 2012, 263:1323-1355 [12] Bekolle D, Berger C, Coburn L, Zhu K. BMO in the Bergman metric on bounded symmetric domains. J Funct Anal, 1990, 93:64-89 [13] Berezin F. Wick and anti-Wick symbols of operators (Russian). Mat Sb, 1971, 86:578-610 [14] Berezin F. Covariant and contra-variant symbols of operators. Math USSR-Izv, 1972, 6:1117-1151 [15] Berezin F. Quantization. Math USSR-Izv, 1974, 8:1109-1163 [16] Berezin F. Quantization of complex symmetric spaces (Russian). Izv Akad Ser Mat, 1975, 39:363-402 [17] Berezin F. General concept of quantization. Comm Math Phys, 1975, 40:153-174 [18] Berezin F. Introduction to Superanalysis. Dordrecht:Reidel, 1987 [19] Berger C, Coburn L. Toeplitz operators and quantum mechanics. J Funct Anal, 1986, 68:273-299 [20] Berger C, Coburn L. Toeplitz operators on the Segal-Bargmann space. Trans Amer Math Soc, 1987, 301:813-829 [21] Berger C, Coburn L. Heat flow and Berezin-Toeplitz estimates. Amer J Math, 1994, 116:563-590 [22] Berger C, Coburn L, Zhu K. BMO in the Bergman metric on the classical domains. Bull Amer Math Soc, 1987, 17:133-136 [23] Berger C, Coburn L, Zhu K. Function theory on Cartan domains and Berezin-Toeplitz symbol calculus. Amer J Math, 1988, 110:921-953 [24] Bommier-Hato H. Lipschitz estimates for the Berezin transform. J Funct Spaces Appl, 2010, 8:103-128 [25] Bommier-Hato H. Derivatives of the Berezin transform. J Funct Spaces Appl, 2012, 15 pages [26] Bommier-Hato H, Youssfi E, Zhu K. Sarason's Toeplitz product problem for a class of Fock spaces. Bull Sci Math, 2017, 141:408-442 [27] H. Cho, J. Park, and K. Zhu, Products of Toeplitz operators on the Fock space. Proc Amer Math Soc, 2014, 142:2483-2489 [28] Coburn L. A Lipschitz estimate for Berezin's operator calculus. Proc Amer Math Soc, 2005, 133:127-131 [29] Coburn L. Sharp Berezin-Lipschitz estimates. Proc Amer Math Soc, 2007, 135:1163-1168 [30] Coburn L. Berezin-Toeplitz quantization//Algebraic Methods in Operator Theory. Boston:Birkhauser, 1994:101-108 [31] Coburn L, Isralowitz J, Li B. Toeplitz operators with BMO symbols on the Segal-Bargmann space. Trans Amer Math Soc, 2011, 363:3015-3030 [32] Coburn L, Li B. Directional derivative estimates for Berezin's operator calculus. Proc Amer Math Soc, 2008, 136:641-649 [33] Cuckovic Z, Li B. Berezin Transform, Mellin Transform and Toeplitz Operators. Complex Anal Oper Theory, 2012, 6:189-218 [34] Davidson K, Douglas R. The generalized Berezin transform and commutator ideals. Pacific J Math, 2005, 222:29-56 [35] Duren P, Schuster A. Bergman Spaces. American Mathematical Society, 2004 [36] Englis M. Functions invariant under the Berezin transform. J Funct Anal, 1994, 121:233-254 [37] Englis M. Toeplitz operators and the Berezin transform on H2. Linear Alg Appl, 1995, 223/224:171-204 [38] Englis M. Berezin transform and the Laplace-Beltrami operator. Algebra i Analiz, 1995, 7:176-195 [39] Englis M. Asymptotics of the Berezin transform and quantization on planar domains. Duke Math J, 1995, 79:57-76 [40] Englis M. Berezin quantization and reproducing kernels on complex domains. Trans Amer Math Soc, 1996, 348:411-479 [41] Englis M. Compact Toeplitz operators via the Berezin transform on bounded symmetric domains. Integral Equations Operator Theory, 1999, 33:426-455 [42] Englis M, Otáhalová R. Covariant derivatives of the Berezin transform. Trans Amer Math Soc, 2011, 363:5111-5129 [43] Englis M, Zhang G. On the derivatives of the Berezin transform. Proc Amer Math Soc, 2006, 134:2285- 2294 [44] Le Floch Y. A Brief Introduction to Berezin-Toeplitz Operators on Compact Kähler Manifolds. CRM Short Courses. Springer, 2018 [45] Garnett J. Bounded Analytic Functions. New York:Academic Press, 1981 [46] Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman Spaces. New York:Springer-Verlag, 2000 [47] Ioos L, Kaminker V, Polterovich L, Shmoish D. Spectral aspects of the Berezin transform. preprint, 2020 [48] Ioos L, Lu W, Ma X, Marinescu G. Berezin-Toeplitz quantization for eigenstates of the Bochner-Laplacian on symplectic manifolds. J Geom Anal, 2020, 30:2615-2646 [49] Janson S, Peetre J, Rochberg R. Hankel forms and the Fock space. Revista Mat Ibero-Amer, 1987, 3:58-80 [50] Karabegov A, Schlichenmaier M. Identification of Berezin-Toeplitz deformation quantization. J Reine Angew Math, 2001, 540:49-76 [51] Kilic S. The Berezin symbol and multipliers of functional Hilbert spaces. Proc Amer Math Soc, 1995, 123:3687-3691 [52] Korenblum B, Zhu K H. An application of Tauberian theorems to Toeplitz operators. J Operator Theory, 1995, 33:353-361 [53] Lee J. Properties of the Berezin transform of bounded functions. Bull Austral Math Soc, 1999, 59:21-31 [54] Li B. The Berezin transform and Laplace-Beltrami operator. J Math Anal Appl, 2007, 327:1155-1166 [55] Li B. The Berezin transform and m-th order Bergman metric. Trans Amer Math Soc, 2011, 363:3031-3056 [56] Luecking D, Zhu K. Composition operators belonging to the Schatten ideals. Amer J Math, 1992, 114:1127-1145 [57] Ma X, Marinescu G. Berezin-Toeplitz quantization on Kähler manifolds. J Reine Angew Math, 2012, 662:1-56 [58] Ma P, Yan F, Zheng D, Zhu K. Products of Hankel operators on the Fock space. J Funct Anal, 2019, 277:2644-2663 [59] Ma P, Yan F, Zheng D, Zhu K. Mixed products of Hankel and Toeplitz operators on the Fock space. J Operator Theory, 2020, 84:35-47 [60] MacCluer B. Compact composition operators on Hp(Bn). Mich Math J, 1985, 32:237-248 [61] MacCluer B, Shapiro J. Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian Math J, 1986, 38:878-906 [62] Nam K, Zheng D, Zhong C. m-Berezin transform and compact operators. Rev Mat Iberoam, 2006, 22:867-892 [63] Nazarov F. A counterexample to Sarason's conjecture. preprint, 1997 [64] Nordgren E, Rosenthal P. Boundary values of Berezin symbols. Operator Theory Advances and Applications, 1994, 73:362-368 [65] Peetre J. The Berezin transform and Ha-plitz operators. J Operator Theory, 1990, 24:165-186 [66] Rao N V. The range of the Berezin transform. J Math Sci (NY), 2018, 228(6):684-694 [67] Sarason D. Products of Toeplitz operators//Havin V P, Nikolski N K, eds. Linear and Complex Analysis Problem Book 3, Part I, Lecture Notes in Math 1573. Berlin:Springer, 1994:318-319 [68] Schlichenmaier M. Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv Math Phys, 2010:927280 [69] Shapiro J. The essential norm of a composition operator. Ann of Math, 1987, 12:375-404 [70] Shklyarov D, Zhang G. The Berezin transform on the quantum unit ball. J Math Physics, 2003, 44(4344):4344-4373 [71] Stroethoff K. The Berezin transform and operators on spaces of analytic functions//Linear operators (Warsaw, 1994), Banach Center Publ 38. Warsaw:Polish Acad Sci, 1997:361-380 [72] Stroethoff K, Zheng D. Toeplitz and Hankel operators on Bergman spaces. Trans Amer Math Soc, 1992, 329:773-794 [73] Stroethoff K, Zheng D. Products of Hankel and Toeplitz operators on the Bergman space. J Funct Anal, 1999, 169:289-313 [74] Suarez D. Approximation and symbolic calculus for Toeplitz algebras on the Bergman space. Rev Mat Iberoam, 2004, 20:563-610 [75] Suarez D. Approximation and the n-Berezin transform of operators on the Bergman space. J Reine Angew Math, 2005, 581:175-192 [76] Suarez D. The essential norm of operators in the Toeplitz algebra on Ap(Bn). Indiana Univ Math J, 2007, 56:2185-2232 [77] Untenberger A, Upmeier H. The Berezin transform and invariant differential operators. Comm Math Phys, 1994, 164:563-597 [78] Zhang G. Berezin transform on compact Hermitian symmetric spaces. Manuscripta Math, 1998, 97:371- 388 [79] Zheng D. Hankel operators and Toeplitz operators on the Bergman space. J Funct Anal, 1989, 83:98-120 [80] Zheng D. The distribution function inequality and products of Toeplitz operators and Hankel operators. J Funct Anal, 1996, 138:477-501 [81] Zhu K. VMO, ESV, and Toeplitz operators on the Bergman space. Trans Amer Math Soc, 1987, 302:617-646 [82] Zhu K. Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J Operator Theory, 1988, 20:329-357 [83] Zhu K. Schatten class Hankel operators on the Bergman space of the unit ball. Amer J Math, 1991, 113:147-167 [84] Zhu K. Operator Theory in Function Spaces. American Mathematical Society, 2007 [85] Zhu K. Analysis on Fock Spaces. New York:Springer, 2012 [86] Zorboska N. The Berezin transform and radial operators. Proc Amer Math Soc, 2002, 131:793-800 |